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1 Introduction

The continuing evolution of networking technology has
resulted in a growing need for network appliances
with higher performance than provided by general-
purpose workstations and more flexibility than provided
by Application-Specific Integrated Circuits (ASICs).
This has resulted in the development of a broad class of
system architectures referred to as network processors.
Although network processors take different forms
depending on the expected needs of packet processing

applications, a typical design involves a fair number
of fully-programmable parallel processing units, along
with a variety of hardware assists to accelerate specific
network computations. The various processing elements
on the network processor are usually coupled with a
general-purpose processor to form a processing hierarchy
(Spalink et al., 2001). The designer of a high-performance
network appliance then develops appropriate application
firmware for the network processor and software for
the general-purpose processor in this hierarchy. Besides
offering high performance, the system can easily be
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updated (for new functionality or bug-fixes) without the
need to redesign new circuits.

Although standard, vendor-implemented functionality
is usually sufficient, in some cases it is necessary for the
network operator (or even the customers) to manipulate
the network processor function, beyond what can
be provided through a simple configuration language.
Providing a robust general-purpose programming
environment on a network processor, similar to what
is offered by the operating system on a general-purpose
system, is not currently possible: existing work either
restricts flexibility to the higher levels of the processing
hierarchy only (Spalink et al., 2001), or assumes that code
provided by users can be expected to be correct and can
thus be safely executed on the network processor without
further precautions (Campbell et al., 2002).

In this paper, we address the problem of designing
a general-purpose programming environment across all
layers in a network processing hierarchy. In previous
work, we have shown how the Open Kernel Environment
(OKE) provides a safe, resource-controlled programming
environment which allows fully optimised object code to
be safely executed in a Linux kernel by non-privileged
users (Bos and Samwel, 2002). This paper discusses a set of
extensions to the OKE for providing similar functionality
at the network processor level. Specifically, we show that
a lightweight OKE, known as Diet-OKE, can be used
to allow resource sharing on the micro-engines of the
IXP1200 network processor (Intel Corporation, 2000).
In theDiet-OKE, users can loadnewapplicationsanywhere
in the hierarchy where there is a general purpose processor
running an operating system like embedded Linux, or as
plug-ins in specific ‘slots’ in application frame works for
those levels that consist of embedded processing elements.
Although this work is centered around the architecture
of a specific network processor, we expect that the same
set of techniques can be adapted to construct similar
architectures for other network processors as well.

The rest of this paper is organised as follows.
In Section 2 we present the overall architecture and the

Figure 1 Architecture (the IXP1200 is used as an example)

issues that need to be addressed to safely execute user code
in the lower levels of a processing hierarchy,with particular
emphasis on embedded network processors. We also
discuss how trust management (Blaze et al., 1999) coupled
with a trusted compiler can be used to control the use of
shared resources at any level in the processing hierarchy.
Section 3 addresses in more detail how these concepts
apply to the IXP1200 family of network processors.
In Section 4 an example is given of an application
framework for special-purpose processing engines on the
IXP1200 and it is shown how new applications can be
plugged in this framework. A set of simple experiments
are presented inSection 5.Finally, in Section 6, conclusions
are drawn.

2 Architecture and implementation

Processing in network appliances such as routers and
firewalls is typically performed by a processing hierarchy
structured similarly to the architecture shown in Figure 1.
The specific processing hierarchy shown in the figure uses
the Intel IXP1200 network processor, which we discuss in
more detail in Section 2.4. The processing hierarchy here
consists of five distinct layers:

L0: Software components running on the NP’s
parallel processing elements (called microengines,
or µ-engines)

L1: Kernel code running on the NP control processor

L2: User-space processes on the NP control processor

L3: Kernel modules running on the host CPU

L4: User-space processes running on the host CPU.

The allocation of functions to different levels of the
processing hierarchy is based on the idea that for achieving
high performance the ‘common case’ should be dealt with
at the lowest possible level, and exceptional, irregular and
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control tasks should be deferred to higher levels. Beyond
the performance-related considerations, the lower levels
are much harder to program, while also having limited
resources (for example, instruction store on the IXP1200).

While the architecture includes all processing levels,
this paper considers only the lowest levels in the hierarchy.
Observe that once programs are loaded in any level below
L4, there is no default (software or hardware) support
to enforce ‘safety’. For example, privileged instructions
are no longer guaranteed to be privileged and Memory
ManagementUnits (MMUs) no longer ensure that a party
only accesses its own address space. So, if multiple parties
are allowed to program these levels directly, i.e., using
fully optimised native code, other mechanisms are needed
to enforce safety by means of resource control. As an
example, we discuss code running in a NP or kernel.
After we have sketched the principles, we will explain in
some detail the mechanisms in the subsequent sections.

2.1 The Open Kernel Environment

The problem of loading code in embedded NPs is in many
ways similar to that of loading code in the kernel of an
operating system. It is a sensitive operation that imposes
risks to the safe and robust operation of the system, and is
therefore typically restricted to privileged users, assuming
that those users will only provide safe and correct code.
From a performance perspective, it would be useful to
avoid such restrictions, as this would eliminate overheads
of crossing protection boundaries in the case of operating
system kernels, or the cost of host-NP communication in
the case of network processing hierarchies. Although it is
possible to design restricted application-specific languages
such as, for instance, the interpreted filter language used
by BSD packet filters (McCanne and Jacobson, 1993),
a system that gives emphasis to generality would rather
set the level of abstraction at the level of general-purpose
object code.

The OKE replaces the hard barrier that prevents
users from loading code in the kernel or NP with more
fine-grained controls on what such code is allowed to do.
In the OKE, trust management is used to determine the
privileges of user and code. Privileges are expressed in the
formof credentials. These credentials are used by a trusted
compiler to determine the constraints to be enforced for a
particular module. We will briefly describe the OKE’s two
main components: the Code Loader (CL) and the trusted
compiler; we refer to Bos and Samwel (2002) for a full
description of the system.1

To run code in the kernel or on the NP, a user submits
object code and the associated credentials to the CL. If the
credentials match the code and the security policy, the CL
loads the code (Figure 2). The security policy is provided
to the CL at start-up.

Most NP vendors provide ‘tailored C compilers’ for
their devices, enabling us to write code in C or any
alternative high-level language for which a translator to C
exists. We chose to adopt an alternative C-like language
that interfaces easily to the rest of the environment

(i.e., NP or kernel) and which we modified in such a
way that, depending on the client’s privileges, more or
less access is given to resources, APIs and data, and/or
more or less runtime overhead is incurred. The language
we use is Cyclone, a crash-free language derived from C
which ensures safe use of pointers and arrays, offers fast,
region-based memory protection, and inserts few runtime
checks (Jim et al., 2002). However, for true safety and
speed, using Cyclone was not sufficient and we extended it
in various ways as discussed below. For programs running
on the µ-engines, the compiler will generate µ-engine
C which is subsequently compiled by the µ-engine C
compiler.

Figure 2 User loads module in the kernel

The key idea is that restrictions, called customisations,
are applied to a user module depending on that user’s
credentials (see Figure 3). Customisations are determined
by customisation types which have unique identifiers,
called customisation type identifiers. As an example, a
customisation type may specify that the code is given a
specific (safe) API and also some upperbounds on the
amount of processing time and memory it is allowed to
use. The amount of memory may still be configurable and
vary from user to user, but it will always be less than the
specified upper bound. In other words, a customisation
type defines the broad category in which the restrictions
fall, while the instantiation of the type applies the specific
configuration parameters for a certain user. The code
is bound to the customisation type by means of an
unforgeable compilation record which should match the
code and the credentials that are later presented by the
user to the CL. Once loaded, the code runs natively at full
speed. Depending on the users’ credentials, they get access
to other parts of theNPor the kernel via anAPI containing
the routines which they may call. The routines are linked
with the user’s code. In other words, the API is used to
encapsulate the rest of the NP/kernel.

Figure 3 User compiles kernel module

The application of the trust mechanism is not limited to
NP or kernelmodules: it fits any situationwhere codemust
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be restricted at compile time to complywith a policy. In the
remainder of this section, we will showwhat the challenges
are for implementing policies at compile time, and we will
show how we can solve these challenges for the different
parts of the processing hierarchy.

2.2 Implementing a policy at compile-time

Given the trust mechanism, we still need to ensure that
code complies with a given safety policy at compile time.
The following issuesmust be addressed ifwewant to enable
users to run applications in any environment in a safe
manner:

• memory protection in the spatial domain (bounds
checking)

• memory protection in the temporal domain
(references to freed memory)

• stack overrun protection

• processing time restriction

• API restrictions

• hiding of sensitive data

• removing/disabling misbehaving code.

The compiler implements restrictions by prepending (prior
to compilation) the appropriate Environment Setup Code
(ESC) to the code submitted by the user. The ESC instructs
the compiler on how to restrict the code for achieving the
following goals:

• remove dangerous constructs from the programming
language

• remove the ability to import APIs

• remove access to certain namespaces

• lock certain fields of data structures so that they can
neither be read nor written

• wrap all entry points of the code with custom
wrapping code.

In addition, the compiler statically analyses stack usage
and, if necessary, inserts run-time checks to ensure that
applications do not overrun their stack bounds.

The mechanisms of the OKE-Cyclone compiler,
combined with the basic safety properties of the Cyclone
language, are used by the ESC to build a restricted
environment for the application.The general structure of
ESC can be described as a positive-negative structure.
First, a set of APIs and support structures is declared
(or included) with a set of wrappers controlling all direct
accesses to critical functions (the positive part). Second, the
APIs and critical language constructs that the user should
not use directly are hidden (the negative part). After the
ESC has been processed, an application is left with a safe
API and just enough rope to hang itself, but not enough
rope to hang the whole target environment.

2.3 Sharing embedded network processors

Embedded systems often concern special-purpose
hardware that is cheap and fast at performing a small
number of functions. There is neither the possibility nor
the need to share such systems. Network processors,
on the other hand, are representative of an entirely
different family of embedded systems. Although these
processors are tailored to the specific needs of packet
processing applications, they are fully programmable
parallel machines capable of implementing a wide range
of functions. The basic premise of network processors
is a better performance-flexibility trade-off compared to
choosing between an ASIC and a general-purpose CPU.

Of particular interest in this context is the
monitoring platform envisioned in the SCAMPI project
(Consortium, 2001). The goal is to provide a generic
‘monitoring appliance’ enabling multiple applications to
gather statistics on network links of at least 10 Gbit/s.
The envisioned system should allow potentially untrusted
hosts to run monitoring code while ensuring that this
code cannot crash the system or access sensitive data.
For example, one module could monitor network
performance for supporting large-scale distributed
computations (‘Grid’ environments), another one could
monitor the network for potential denial of service attacks
(e.g., TCP SYN packets), and another module scans a
subset of the packets for potentially harmful content
(e.g., #!/bin/perl in the payload, which may indicate a
hacker).

While it is possible to implement such an extensible
monitoring system using ‘off-the-shelf’ components, the
processing capabilities available to applications on a
general-purpose architecture restrict its scope to roughly
1 Gbit/s rates, while also providing a somewhat limited
processing budget (Anagnostakis et al., 2002).

Similarly, other applications may need to perform
transcodingon (possibly overlapping) subsets of the traffic,
set differentiated services (Blake et al., 1998) bits in
the IP header, or add forward error correction code to
the payload of some packets. In this model, application
providers are ‘clients’ of the hosting operator. Due to
the high data rates, it would be difficult to support these
applications on a general-purpose architecture.

Note that in many cases, both in network processing
but also in the more general context of embedded systems,
there is neither the possibility nor the need to provide a
programming interface to untrusted applications, or to
offer a multi-programming environment. Our work may
be less relevant in these cases. However, in cases such as
networkmonitoring, this is a reasonable (and challenging!)
engineering goal.

In the remainder of this work, we assume that the
granularity for processing power is at least a µ-engine.
In other words, Diet-OKE applications consist of one
or more µ-engines, but the µ-engines themselves are not
shared. Note that this is an engineering decision and not a
necessity. With some more effort, a finer granularity could
be implemented, e.g., at the level of µ-engine threads.
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2.4 The IXP1200 network processor

The basic architectural components of the Intel IXP1200
NP are shown in Figure 1. The NP includes a StrongARM
control processor (running embedded Linux) and six
µ-engines, which are highly optimised processing engines
for fast packet processing. Code running on the µ-engines
consists of low-level (assembly-like) code, not supported
by an OS. Each µ-engine runs at 200 MHz contains
four hardware contexts (threads) implementing a form of
simultaneous multithreading (Tullsen et al., 1995), a fairly
extensive set of registers, and a small instruction store
(1K instructions). Packets are received from the MACs
in 64 byte chunks, knows as mpackets and transferred
into a set of buffers (capable of storing 16 mpackets)
over a proprietary bus (the IX bus). The micro-engines
and StrongARM interface to SRAM, SDRAM and a
small amount of on-board scratch memory. Although
many different configurations are possible, the IXP used
in this work was provided with two 1 Gigabit Ethernet
MACs for packet reception. More recent version of the
IXP contain more micro-engines each of which supports
more threads. For example, the latest model, known as
IXP2800, contains 16micro-engines with support for eight
threads each, instruction stores of 4K, and additional
supporting hardware units. By interfacing to 10 Gbps
Ethernet, it surpasses the link rate of the IXP1200 by
approximately an order of magnitude.

3 Sharing resources on the IXP1200

The necessary mechanisms for safe programming of an
operating system kernel are provided by the OKE as
described in Bos and Samwel (2002). As the StrongARM
processor on the IXP is capable of running a commodity
operating system such as Linux, the techniques used in the
OKE apply without furthermodifications. The challenging
part is enabling safe programming on the µ-engines:
the µ-engines do not run an operating system and do
not provide support for common programming concepts
found in general-purpose architectures. For instance, the
µ-engines do not support stacks or recursion, so the stack
overrun problem does not exist. Therefore, some of the
OKE functions become redundant. On the other hand,
µ-engine safety requires issues such as processing bounds
to be addressed in a different way, and some issues are
unique at this level.

The resulting modified OKE used on the µ-engines
is known as Diet-OKE, and we sketch solutions for
each of the remaining problems listed in Section 2.2.
Although there is currently no full compiler support
for Diet-OKE, all mechanisms have been implemented
and tested in isolation. The basis of our solutions lies
in an OKE-Cyclone compiler generating µ-engine C, a
dialect of the C programming language with µ-engine
programming extensions. As the current OKE-Cyclone
compiler produces ANSI C, the necessary translation to
µ-engine C is relatively straightforward. As the storage

class for all variables can be explicitly specified in µ-engine
C, the OKE-Cyclone compiler therefore needs to be
extended with storage class specifiers. Another issue with
µ-engine C is the presence of many intrinsic functions in
µ-engine C, but these intrinsics have the same appearance
as function calls and are therefore easy to support.
Applying API restrictions for µ-engines is in no way
different from API restriction in the regular OKE. Hiding
of sensitive data in OKE-Cyclone is handled using the
locked type modifier, and this mechanism can also be
used unmodified for hiding parts of data-structures in
µ-engine programs. The locked and const modifiers
provide the tools for detailed access control performed
fully at compile-time.

3.1 Handling misbehaving code

Diet-OKE attempts to catch potential problems in the code
as early as possible, e.g., at compile time. However, there
will always be situations that cannot be caught statically
and therefore require the insertion of run time checks.
Code misbehaviour comes in various forms, e.g., memory
access violations, CPU time violations, API violations,
and deadlock. Violations can be detected either within
the µ-engine code itself (e.g., memory access violations
and API violations), or from the outside (processing time
violation, deadlock). There aremultiple possible responses
to violations. For instance, one can attempt to fix the
situation that occurred as it occurs, or, alternatively, one
may simply terminate the application.Fixing errors usually
costs extra instructions, and we prefer not to spend cycles
and valuable instruction store space on fixing errors caused
by incorrect code. Therefore,Diet-OKE simply terminates
any application that caused violations.

Terminating an application running on a µ-engine is
handled by the IXP’s StrongARM core. The software on
the StrongARM is able to stop an individual µ-engine
and remove the application that was running on that
µ-engine, making the µ-engine available for a new
application. If a violation is detected from software
running on the StrongARM, the violating application can
be terminated immediately. When a µ-engine detects a
violation, it notifies the StrongARM of the violation and
then leaves it to the StrongARM to take action. When
a violation is detected by instrumentation code inside
an application itself, e.g., by a bounds check inserted by
OKE-Cyclone, the application notifies the StrongARM of
the violation and then goes into an infinite loop, awaiting
death.

One last issue with terminating an application is that it
may be holding locks on shared resources. To release these
locks, one needs to maintain lock ownership information.
Each global lock structure therefore needs to include a
field identifying the µ-engine that owns it. To make this
operation atomic, we use the hardware-supported CAM
locksassociatedwith the IXPSRAM.These locks are fairly
efficient: they are locks on memory addresses in SRAM
that do not block future reads on the SRAM but that
only block other CAM lock requests on the same address.
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The CAMunlock operation also allows an atomic write to
the memory address to be unlocked. These two operations
are sufficient for managing locks on shared resources as
needed by our framework.

3.2 Enforcing processing constraints

The processing constraints that need to be enforced on
µ-engines are different from the StrongARM and the
general-purpose CPU. In the latter, the processor is shared
between applications, requiring the use of a timer facility,
or embedding guard instructions within program loops for
determining if an application has exceeded its allocated
processing share. In the former, applications are isolated
on different µ-engines, and such checks are not necessary.

The only consequence of an application spending too
much time processing a packet is that the packet needs
to be buffered until the application signals completion
and releases the buffer. When an application performs
extensive processing, or runs into an infinite loop, buffer
space will not be released. This would not be a concern if
we could restrict applications to process only one packet
at a time, as the number of buffers can be configured
to exceed the number of applications. Some applications
may, however, require buffering multiple packets before
computing a result.

The system therefore needs to consider whether
an application has exceeded a (policy-controlled) time
budget for a particular packet. To address this problem,
we opted for embedding the timeout checking in the
receive loop of the application support framework.
This approach is straightforward and at the same time
efficient. Applications running on µ-engines are forced
to set a bit signalling that they are done with a packet.
If an application does not provide this signal, the timing
violation will result in the application being terminated.

3.3 Packet access

Packets are read into a µ-engine by reading them from
the RFIFO (the µ-engine hardware receive buffer) into
SDRAM in 64 byte chunks (mpackets). A prefiltering
function determines whether or not an application should
be given access to a packet header and if so, what sort
of access (read or write). Illegal access is prevented by
only supplying packets to an application after prefiltering
has been done. Access to specific parts of a packet can
be guarded at compile time using a combination of access
APIs and locked fields.

3.4 Memory access

Ensuring access to memory locations is safe is the most
complex feature of Diet-OKE. Any implementation of
memory access protection in the spatial domain requires
some form of bounds checking which is complicated by
the fact that IXP µ-engines have no hardware support
for memory management. Therefore, we are forced to
implement the checks in the software, at the cost of

expensive processing cycles. The Cyclone language has
built-in support for bounds checking with varying levels
of flexibility and speed. Analysis of the code generated
by the compiler has shown that some of the bounds
checks can be eliminated through aggressive optimisation.
In addition, the Cyclone language has facilities that
allow for factoring out bounds checks from code blocks,
effectively performing them only once in advance instead
of every time an array is referenced. The combination of
these two factors alleviates the pressure that the bounds
checks will put on the processing cycle budget of the
applications.

Memory protection in the temporal domain required
the use of a garbage collector in the OKE implementation
for the Linux kernel. It is clear that this cannot be
done for µ-engines. Instead, the protection is hidden
behind APIs. We expect that in most cases it will be
sufficient for applications to preallocate fixed chunks
of memory on start-up. This memory remains allocated
throughout the lifetime of the applications. Naturally,
as memory is a shared resource, the amount an
application can preallocate would be controlled by policy
constraints.

4 Application framework

We have implemented an application framework for
packet processing on the IXP that allows up to five
untrusted applications to share the µ-engines and perform
independent network processing functions. It should be
mentioned that this application framework is only an
example, tailored to the task of network monitoring,
assuming multiple monitoring applications loaded by
different users on the NP.

The framework dedicates one µ-engine on the IXP
to the reception of packets, while the other µ-engines
run the untrusted processing applications.2 A µ-engine
that transmits packets is not included in the framework,
but transmissions can be implemented by a consuming
µ-engine. As such, the framework without a transmitter
is mostly useful for monitoring of packets coming out
of a splitter for that purpose only (i.e., that need not be
transmitted).

The application µ-engines consume the packets
asynchronously, allowing applications with highly
varying packet consumption speeds and per-packet
speed variations to work together without any problems.
For example, one application might want to process
almost every packet but for only a very short time, while
another application might want to process only every one
in a 1000 packets but for 500 times as long. Situations
such as these are handled gracefully by this framework.

In the remainder of this section, we will describe
the data structures used to communicate between the
µ-engines in the framework, the activities performed by
the µ-engine that does the receiving, and the structure of
the applications on the other µ-engines.
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4.1 Framework data structures

The data structure used to communicate between the
receiver µ-engine and the applications is essentially a
circular buffer consisting of slots that can contain one
packet each. Because of the properties of the different
storage interfaces of the IXP, the buffer is split over SRAM
memory (which has relatively low latency and supports
synchronisation primitives) and SDRAMmemory (which
can be used to receive packets). The SRAM memory
contains the bookkeeping information, while the SDRAM
contains the actual packet data. Every slot in the
bookkeeping buffer has a corresponding fixed-size slot in
theSDRAMbuffer.Everybookkeeping slot containsfields
for the following information:

• the number of bytes already received in the packet

• a flag indicating whether the packet is complete

• five flags indicating whether application n (n = 1, 2,
3, 4, 5) has finished processing the packet

• a read lock for each µ-engine and a single write lock.

4.2 Microengine activities

The receiver µ-engine adds packets to the buffer as it
receives them. It instructs the IXP’s FBI (FIFO Bus
Interface) to place the received data in the SDRAM slot
associated with the bookkeeping slot. When the data has
been received, it updates the bookkeeping information in
SRAM to reflect the reception of new data. The receiver
µ-engine can use multiple threads to receive up to four
mpackets simultaneously. Our measurements have shown
that a configurationwith only two threads gives the highest
throughput. This can be explained from the fact that the
transfer of mpacket data from the MAC to the RFIFO
(the IXP’s internal receive buffer) has to be serialised, and
at a certain point the addition of more threads just leads
to a higher synchronisation overhead.

The application µ-engines run a loop that consumes
packets from the buffer. Their reading position may be
very close to the packet the receiver µ-engine is currently
receiving (actually, they may already read the packet as
it is still being received), but they may also lag behind
a bit. Depending on the application, the µ-engines may
process multiple packets at the same time in multiple
threads, and the threading functionality is used to overlap
the processing of multiple packets as much as is possible
without sacrificing safety.

The receiver µ-engine has one additional task, which
consists of ‘mopping up’ the packet slots behind the
receiving applications. The cleaning code cleans up one
packet slot for every packet received, so it keeps an
exact distance in packets from the head of the buffer.
The purpose of this task is to limit the amount of packets
that a task may lag behind, because buffer space is limited
and slots eventually have to be reused. When a packet slot
is mopped up, it is possible to detect that an application
has not finished processing the packet (from the flag in

the bookkeeping information), and when this is the case,
this is regarded as an application misbehaviour, and the
application is immediately terminated.

4.3 Application structure

In the specific application framework, an entire µ-engine is
allocated for each application. Extending this framework
for an application to allocate multiple µ-engines is
straightforward. The user can decide how the resources
(e.g., threads) of the µ-engine need to be utilised for the
particular application. A user typically dedicates some
threads to packet processing, and others to auxiliary tasks
(such as performing maintenance work on module state).
The structure of auxiliary threads is generally left to the
application,within the safety limits determinedby theESC.
The control of the packet processing thread is however
fully in the hands of the ESC: the ESC provides slotswhere
users can plug application-specific code.

A typical packet processing thread consists of a loop
that processes one packet per iteration. Processing in the
loop can takedifferent formsdependingonwhatpart of the
packet needs to be inspected, and the type of access (read
or write) that is needed by the application. For instance,
if an application is interested only in IP headers these
lie entirely in the first mpacket and the application does
not have to wait for additional mpackets to be received.
The current application framework is optimised for read
access, assuming that reading is more common than
writing on packet data (which is the case in monitoring
applications). Obtaining a read lock is done by setting a bit
in the control structure.Writers have to set the global write
lock and obtain all of the read locks. The IXP provides
atomic test-and-set operations. It is obvious that readers
are given preference andwhenever any application is active
reading, the writer keeps trying until the read lock becomes
available.

The packet processing thread structure is specified
by the application programmer. This is passed to the
trusted compiler as a policy statement which causes
the ESC to be parameterised for different applications
(as discussed in Section 2.1). The ESC then generates a
packet consumption skeleton for the specific policy as the
main loop for the packet processing threads and declares
a number of prototypes for functions that the application
must implement. These are the ‘slots’ referred to in the
Introduction.3 The application programmer implements
these functions to specify what actions to take in response
to packet reception, and the compiler inlines the code
provided in the packet consumption loop.

5 Experiments

Wemeasure theperformanceof the application framework
and the impact of run-time checks on the performance
of four toy applications. All measurements reported
are obtained on the Intel IXP simulator, providing
a cycle-accurate simulation of the IXP1200 hardware.
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Our experiments assume 200 MHz µ-engines, as provided
by the IXP1200 board in our test-bed.

For determining the performance of the packet
reception framework, we first measure the maximum
loss-free rate achieved as a function of packet size.
The results are shown in Figure 4 where packet reception
employs two receive threads on one µ-engine. As expected,
the throughput is lower for small packets because of
per-packet overheads, but the throughput is generally
between 600 and 700Mbit/sec (for a theoretical maximum
rate of 1 Gbit/s). This is approximately the same as
reported by Intel in Johnson and Kunze (2002).

Figure 4 Maximum reception throughput (see online version
for colours)

Next, we implemented four example packet processing
applications that serve as the basis of our tests.
The applications perform the following tasks:

• TCP SYN flood detection: Detect TCP packets with
the SYN flag set and increase a counter if one is
encountered. This can be used for implementing the
approach of Wang et al. (2002).

• UDP packet counting: Counting of the number of
packets destined for either Id Software (Doom) or
Sun RPC ports.

Figure 5 The overhead of runtime checks for various applications (see online version for colours)

• Intrusion detection: primitive content-matching by
searching for the string ‘/bin/’ in bytes 2–18 of the
payload of TCP packets (which may indicate a
intrusion attempt).

• Marking for Differentiated Services (DiffServ)
(Blake et al., 1998): Setting the DiffServ field of an IP
packet to a specific value if the packet originated
from a specific IP address.

For emulating the safety checks of Diet-OKE , we added
hand-crafted run-time bounds checks to the original code
in the same way they would have been added by an
OKE-Cyclone compiler. The application most heavily
affected by this is the ‘/bin’ detection application, because
it contains a loop over an array of characters.However, the
other applications are also affected because they contain a
check on whether the header fields they reference lie within
the bounds of the packet.

As shown in Figure 5, we have measured the packet
latency for each of the applications with checks as well
as without checks. The applications turned out to run
most effectively when they ran with only two threads
per µ-engine, due to overloading of the SRAM bus with
synchronisation activity in the presence of more threads.
The reason this happens is because of the (admittedly
inefficient) synchronisation mechanism of the current
application framework where each processing thread is
actually polling the next packet slot it has to process
for the presence of a new packet. Every measurement
on the applications was done twice, once with the other
applications running as well on other µ-engines, and
once with only one application running. The results are
shown in Figure 5. As expected, the checked versions
take slightly longer than the unchecked versions, and
the greatest difference is found in the ‘/bin’ detection
application. Also, the measurements taken while other
applications were running take slightly longer because
the applications must compete with each other for access
to the memory bus. The ‘/bin’ detection application is
relatively slow, especially when taking into account that
the number of available cycles per packet per µ-engine
is 204 cycles when the IXP is receiving 64-byte packets
at 500 Mbit/sec. However, the value we measured was
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Figure 6 Snapshot of some of the micorengine threads (see online version for colours)

the per-packet latency, not the amount of processing
cycles, andby running this applicationwithmultiplepacket
processing threads (or even multiple µ-engines) it is in fact
possible to keep up with high packet rates.

To illustrate the way the framework runs on the IXP,
and how the specific features of the IXP can be used for
reducing the effects of hardware latency, a snapshot of the
thread activity while all four applications were running
is shown in Figure 6. The time dimension runs from left
to right (the cycle numbers are displayed at the top).
Thick black lines indicate processor activity, while the
other, thinner lines indicate hardware activity. Thread 0
and thread 1 in the figure are the receiving threads running
on the first µ-engine. Thread 0 is waiting on operations
performed by the IX bus, the connection between the
MAC and the IXP, and while this thread is waiting, thread
1 updates internal logic and fires off an update of the
bookkeeping data in SRAM without waiting for it to
complete (this can be seen from the fact that the processing
line continues after the SRAM request has been fired).
Thread 8, which runs on µ-engine 2, is reading a packet
header from SDRAM. The fact that it fires off multiple
simultaneous SDRAMrequests illustrates the general IXP
feature that threads can fire off multiple hardware requests
without waiting for the results. In this way, the memory
accesses are highly parallelised and much of the latency
is hidden. In the meantime, thread 9, 20 and 21 are seen
to be polling the SRAM bookkeeping information for the
availability of new packets.

6 Summary and concluding remarks

We have considered the problem of safely supporting
a multi-programmed workload of untrusted applications
in a system based on an embedded network processor.
We have shown that it is possible to expose the processing
resources across all levels in the resulting packet processing
hierarchy through a single coherent framework. For the
higher levels of the hierarchy, we have directly applied the
results of our work in the OKE. For the set of low-level
parallel processing units of the network processor, called
µ-engines, our work has resulted in a stripped-down
and somewhat modified version of the OKE known as
Diet-OKE. We believe that the functionality provided by
Diet-OKE allows for new applications in which embedded
network processors can be useful.

Naturally, such flexibility comes at a price. First, the
runtime checks needed to ensure safety incur overheads.
Our experiments suggested that ‘typical’ overheads would
be at the order of 20% of the equivalent unsafe code – this
is roughly the same as observed in similar general-purpose
systems. Second, users that wish to run code on the
µ-engines through the use of Diet-OKE will have to
adhere to the specific programmingmodel stipulatedby the
application framework of that domain. The model could
be restrictive for some applications, although this is not
evident in our experiments, as the application framework
was designed with the specific applications in mind. As a
result, and depending on the framework’s environment
setup code, the programmer may be unable to exploit fully
the available resources. Nevertheless, it is clear that safely
exposing these processing resources requires mechanisms
such as those employed in Diet-OKE.

Considering the cost of safety, the design presented is
suitable only when the safety overheads incurred are offset
by the expected performance benefits. We have discussed
the particular example of network monitoring, where
moving part of the application function from higher-level
processing elements to the embedded network processor
can greatly improve performance. We expect that network
monitoring, and applications with similar needs, will find
the techniques described in this paper useful.

Finally, we anticipate that the basic design principles
demonstrated in this paper, if not the architecture itself,
can be valuable in guiding the design of other embedded
systems with a need for an open software architecture.
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Notes

1A complete version of the OKE for the Linux kernel is
available for download from http://www.liacs.nl/∼herbertb/
projects/oke/

2Although more engines could be dedicated to packet reception,
this leaves fewer µ-engines for applications, while incurring
more synchronisationoverhead.Also,when receivingdata from
only a single port, it is the port latency that is the limiting factor,
not the number of µ-engines used.

3These ‘slots’ should not be confused with the slots described in
Section 3.4.4.1.


