
Scalable network monitors for high-speed links:
a bottom-up approach

Trung Nguyen†, Mihai Cristea†, Willem de Bruijn∗, Herbert Bos∗
†Leiden Universiteit, The Netherlands
{tnguyen,cristea}@liacs.nl

∗Vrije Universiteit Amsterdam, The Netherlands
{wdb, herbertb}@few.vu.nl

Abstract— Monitoring traffic on high-speed links using com-
modity hardware is difficult due to relatively slow buses and
memories. It is possible to alleviate the burden on these resources
by pushing down packet processing to programmable NICs.
Until now, however, the use of such cards for monitoring
by network administrators has not been a practical solution,
because programming the cards is too complex. For this purpose,
we introduce NIC-FIX, a monitoring framework for network
processors that scales to high link rates and is easy to use.

I. INTRODUCTION

Packet handling in modern workstations works well for
slow, sub-gigabit speeds but fails badly at higher rates. While
some operating systems fare a little better than others, this
statement is true irrespective of one’s choice of operating
system [1]. The problem is caused by a combination of
hardware and software bottlenecks.

Memory and peripheral bus technologies struggle to keep
up with backbone link rates. Even if a workstation does
manage to get all packets across the bus in host memory
and from memory in the CPU, inefficient packet handling
by the OS still makes it difficult to process packets at high
speeds. The problems are commonly rooted in the overhead of
interrupt handling, context switching and packet copying [2].
As it stands, we conclude that common workstations with
current hardware and software configurations are not suitable
for high-speed network monitoring. At the same time, the
need for affordable network monitors is growing, e.g., for
security, traffic engineering, SLA monitoring, charging, and
other purposes.

In this paper we present NIC-FIX, an implementation of
the Fairly Fast Packet Filter (FFPF) [3] network monitoring
architecture on network cards with Intel IXP1200 network
processors (NPU) [4]. FFPF has been used as a codebase for
implementing the Monitoring API (MAPI) developed within
the European Scampi Project [5]. Its architecture can be de-
scribed as ‘bottom-up’ in that packets are handled at the lowest
processing level and few packets percolate to higher levels.
Moreover, higher levels only take action when prompted to
do so by the lower layers. This is a well-known approach,
e.g., in router design [6].

NIC-FIX forms the lowest level of the FFPF hierarchy.
It allows us to deal with common hardware bottlenecks

by offloading packet processing to the network card when
possible, thus reducing strain on the memory and peripheral
buses. Complementing the framework we also introduce FPL-
2, a novel filter language that is more powerful than existing
ones such as BPF or its Linux cousin LSF [7] and has been
implemented on top of NIC-FIX.

The rest of this paper is laid out as follows: in Section II
we give an overview of the FFPF architecture. Section III
discusses the specifics of NIC-FIX, while Section IV is
devoted to the FPL-2 filter language. The software is then
evaluated in Section V. Related work is discussed throughout
the text and summarized in Section VI. Conclusions are drawn
in Section VII.

II. FFPF OVERVIEW

We will now summarize the relevant aspects of the FFPF
architecture. A more detailed discussion can be found in [3].
FFPF was designed to meet the following challenges: (1) mon-
itor high-speed links and scale with future link rates, (2) offer
more flexibility than existing packet filters, and (3) provide a
migration path by being backward compatible with existing
approaches (notably pcap-based applications [7]).

A. Flows

A key concept in FFPF is the notion of a flow. Flows
are simply defined as a subset off all network packets. This
definition is broader than the traditional notion of a flow
(e.g., a ‘TCP connection’) and encompasses for instance
all TCP SYN packets or all packets destined for the user
with UID 0. To accommodate for such diverse flows, FFPF,
instead of specifying filters itself, allows for varied selection
criteria through extensions. This makes it more versatile than
traditional flow accounting frameworks (e.g. NetFlow or IP-
FIX [8]). Furthermore, FFPF filters can be interconnected into
a graph structure similar to that of the Click [9] router for even
more fine-grained control. A filter embedded in such a graph
is called a flowgrabber.

B. Grouping

The flowgroup constitutes a second key concept in FFPF.
Flowgroups allow multiple flows to share their resources. As
resource sharing poses a security hazard group membership

is decided by an application’s access constraints. Network
packets can be shared safely between all applications in a
single flowgroup. Whenever a packet is accepted by one or
more filters in a flowgroup, it is placed in a circular packet
buffer (PBuf) only once, and a reference to this packet is
placed in the individual filters’ index buffers (IBuf). In other
words, there is no separate packet copy per application. As
buffers are memory mapped, there is no copy from kernel to
userspace either.

PBuf
(shared by
A and B)

application A application B

1 2 3 4 5 MBuf(f)MBuf(f)

IBuf(f)

userspace
A B

kernel
and
NIC

filter A

filter B

FFPF kernel module
or IXP1200 code

packet sources

1

4 2 4

5

A 3 IBuf(f)B 3

Fig. 1. The FFPF architecture

Figure 1 shows FFPF in its most basic form. Flows are
captured by user-supplied filters 1©. Corresponding to each of
the filters are three buffers: the main packet buffer PBuf 2©,
a filter-specific index buffer IBuf 3©, and a filter-private
memory area called MBuf 4© that can be used for keeping
state. For instance, a packet counting filter may use MBuf
to store its counter. Packets enter the system on one or
more ‘packet sources’ 5©. Currently, three packet sources are
implemented: two for regular NICs and one for NIC-FIX. In
this paper, we focus on the latter.

C. Flowgraphs

In the full FFPF architecture, filters written in different
languages may be mixed and matched in a directed acyclic
flow graph. An example is shown in Figure (2.a). In the
example, two flows A and B are captured, both of which
contain only webtraffic. Flow A consists of worm signatures
within this webtraffic while flow B is used to count the number
of IP fragments in all web traffic.

The example illustrates the following points. First, the
utilized filters generate both simple statistics (a counter) and
more complex state (sets of IP addresses). Second, flow A

is computationally expensive, performing a full payload scan
(which is impossible with existing filter languages like BPF).
Third, the flow graphs of the two flows are combined for
efficiency, by executing the first filter only once. Whenever
a new flow is created, FFPF automatically checks whether it
can be embedded in an existing flow graph. Fourth, different
languages are mixed. Fifth, as fragmentation is rare and few
packets contain a worm, in the common case there is no need
for the monitoring application to be scheduled at all (reducing
context switches).

Building these complex graphs is no more difficult in FFPF
than creating a complex program by connecting simple tools
using UNIX pipes. For example, pronouncing the construct
‘->’ as ‘connects to’ and ’|’ as ’in parallel with’, the com-
mand in Figure 3 captures two different flows. The top flow
specification indicates that the filter should capture packets at
device eth0, pass them to a sampler that captures one in
two packets and requires four bytes of MBuf. Next, sampled
packets are sent both to a bytecount function and to an FPL-1
filter (a predecessor of FPL-2). The bytecount function does
not take any arguments, but requires eight bytes of MBuf to
store the result. The FPL-1 filter executes a user-specified filter
expression (indicated by “...”), and in this example requires
no MBuf. The result of these last two functions is forwarded
to a special function accept, which delivers the packets to
the application. In this (silly) example, two filters may pass
the same packets via the same accept, so applications may
receive the same packets twice. The second flow has two filters
in common with the first expression, but now the packets are
forwarded to another FPL-1 filter, and all packets passing this
filter are accepted.

Fig. 4. autogenerated flowgraph image

As a by-product, FFPF generates a graphical representation
of the entire flow-graph. For example, Figure 4 shows the two
flows defined above (minus the devices). For simplicity, we
have shown a very minimal configuration in which just four
filter classes are present and everything happens in a single
level of the processing hierarchy.

The active elements, flowgrabbers, are shown as ovals while
the edges between them denote packet flows. The location of
independent filters themselves are shown as circles. Finally,
the rectangles at the bottom show filterclasses, blueprints
from which the filters are instantiated. These seemingly vague
distinctions help to reduce work duplication. In the example,

[BPF]
is IP/TCP/HTTP?

[FPL-2]
contains CodeRed?

[FPL-2]
is Fragment?

[FPL-1]
save IP<src,dest>

[FPL-2]
incr FragCount

[FPL-1]
if (first) return pkt

[FPL-2]
if (first) return pkt

[FPL-2]
stmt1 -> stmt2 -> stm3

[FPL-1]
Create hashtable

[C]
find ’top-10’ in table

(a) (b)

B B B

A A A

A B+

Fig. 2. (a) combining different languages in two flows (A and B), (b) calling external filters functions from a single flow

ffpf_flow "(dev,eth0) -> (sampler,2,4) -> (bytecount,,8) | (fpl1,"...") -> accept" \
"(dev,eth0) -> (sampler,2,4) -> (fpl1,"...") -> (accept)

Fig. 3. FFPF from the command line: two partially overlapping flow graphs

for instance, two filters are seen to share a filterclass ’fpl1’
which means that the same interpreter can be called with
different expressions. Also, two flowgrabbers can rely on a
single filter, as is the case with the ‘accept’ grabbers.

D. Buffer management

Buffer management concerns how readers and writers syn-
chronize and share their buffers. FFPF supports two syn-
chronization modes: ‘slow reader preference’ (SRP) and ‘fast
reader preference’ (FRP). SRP corresponds to ‘traditional’
buffer management in which new packets are dropped if the
buffer is full. While convenient, the disadvantage is that one
tardy application that fails to read the (shared) PBuf at a
sufficiently high rate, causes packet loss for the entire group.
FRP, in contrast, simply keeps writing regardless of whether
the buffer is full. The trick is that it enables applications to
check a posteriori whether the packets they just processed
have been overwritten. For efficiency, applications in both
SRP and FRP may process their packets in batches (e.g. 1000
packets at a time) in order to minimise context switches.
Details about SRP and FRP are provided in [3].

Filters may read the MBuf of other filters in their flow
group. In case the same MBuf needs to be written by multiple
filters, the solution is to use function-like filter calls, rather
than pipe-like filter connection discussed so far. For filter call
semantics, a filter is called explicitly as an external function by
a statement in an FPL expression which will execute the target
filter with the calling filter’s IBuf and MBuf. An example is
shown in Figure (2.b), where a first filter call creates a hash
table with counters for each TCP flow, while a second filter
call scans the hash table for the top-10 most active flows. Both
access the same memory.

E. Processing stack

FFPF consists of a 3-level processing stack, executing (1)
in userspace, (2) in kernelspace, and (3) on the NIC. Figure 5
shows the complete stack including userspace support libraries
such as libpcap. Not all levels have to be used. For instance,
FFPF supports pcap applications without modification, by
using solely the lower two levels. Similarly, it can run on
existing commodity hardware without processing at the NIC.

FFPF-Kernel

Applications

userspace

kernel

ixp1200

FFPF-Userspace

NIC-FIX

PCI board API

userspace API

libpcap

MAPItoolkit

NIC-FIX
filter

sample scan1

scan2

Fig. 5. The NIC-FIX software architecture with 3 example flows

When users instantiate a composite flowgraph such as
shown in Figure 2, it remains transparent to the application
at which levels its filters are executing. FFPF automatically
finds the most appropriate level in the hierarchy. The rule is
that a filter f is instantiated at the lowest level that supports
the function and that is equal to or higher than the levels of
all f ’s immediate predecessors in the flow definition.

III. NIC-FIX: FFPF ON THE IXP

A. Network Processors

Communication and memory bus bottlenecks can be circum-
vented by moving packet processing to the NIC. For such tasks
special purpose devices are often considered the best solution
as these are dedicated and fast. However, such ASIC based
boards are too inflexible for fast changing tasks like network
monitoring (e.g. worm signature checking). Also, their high
costs interfere with FFPF’s goal of using commodity hardware.

A solution that shares some of the advantages of dedicated
devices with the cost-effectiveness of commodity hardware is
the network processor (NPU). Several NPU platforms have
been created, such as IXP by Intel, PowerNP by IBM and
C-Port by Motorola. Network processors are dedicated pieces
of equipment consisting of high-speed memory and fast in-
terconnects. Contrary to high-end solutions, however, they do
not contain preprogrammed ASIC’s, but use reprogrammable
‘micro’ processors.

The Radisys ENP 2506 network card that was used to
implement NIC-FIX is displayed in Figure 6. For input, the
board is equiped with two 1Gpbs Ethernet ports 1©. The card
also contains a 232 MHz Intel IXP1200 network processor
with 8 MB of SRAM and 256 MB of SDRAM 2© and is
plugged into a 1.2 GHz PIII over a 32/66 PCI bus 3©. The IXP
is built up of a single StrongARM processor running Linux and
six independent RISC processors, known as µEngines, running
no operating system whatsoever. Each µEngine supports four
threads that have their own program counters and register sets
and support zero-cycle context switches. Each µEngine has its
own code 1K instruction store.

Fig. 6. Main components of the ENP-2506 board

B. NIC-FIX software architecture

Packets arriving at the IXP’s network ports are filtered
by the µEngines. A packet that passes the filters is stored
in SDRAM on the card and a reference is passed to the
host. Whether the packet itself is transferred to host memory
depends on the configuration (as will be discussed in Sec-
tion III-E). We do not suggest that complex processing, such
as full payload pattern matching, is likely to performed on the
µEngines (although this is not precluded). Rather, we propose
to use the card mainly as a prefiltering stage.

Per network interface a single µEngine is responsible for
receiving packets. The remaining µEngines are available to
execute application-specific filter programs.

C. Filters

The basic structure of the programs running on the µEngines
is as follows. For each µEngine, NIC-FIX provides boilerplate
code in µEngine C, a subset of the C language. This boilerplate
code contains a standard main() processing loop and a slot for
the application-specific filter function.

In principle, users may define the entire body of their filter
function directly in µEngine C. However, in practice this is
complex. That is why NIC-FIX also exports a higher-level
approach, whereby filters are written in a special purpose filter
language (discussed in Section IV) which can be precompiled
to µEngine C. The intermediate code combined with the
boilerplate is then compiled to object code. This scheme
closely resembles that of hardware plugins [10]).

PCI bus 32-bit @ 66MHz

StrongARM Core
- Start/stop uEs
- Program FBI

u
E

1
fl

o
w

 e
x

p
re

ss
io

n
 1

uE0
Receive Pkts

1 2 3 4 Pbuf

Ibuf 1 Ibuf 2

Mbuf 1 Mbuf 1

u
E

2
fl

o
w

 e
x

p
re

ss
io

n
 2

SDRAM

IXP1200

x86 Host

1 2 3 4 Pbuf

Ibuf 1 Ibuf 2

Mbuf 1 Mbuf 1

M
 M

 a
 p

FFPF kernel module

User Applications

Fig. 7. NIC-FIX software organisation: the memory on the card is mmapped
to the host (as indicated by the dashed ‘ghost image’ of the buffers).

D. On-board filtering

When a packet arrives at a network port its dedicated
receiver µEngine copies the packet to the next available slot
in PBuf. The remaining µEngines each execute a single filter.
All four threads on a µEngine execute the same filter, but on
different packets. If the packet matches the filter, the µEngine
places a reference in the flow’s IBuf. Otherwise, it is ignored.
A packet is considered interesting when the user-specified
filtering function returns a non-zero result.

The PBuf resides in the NIC’s SDRAM and consists of
static slots sufficiently large for any Ethernet frame. As shown
in Figure 7, all three NIC-FIX buffers are memory mapped
at the host processor.

E. Communication and Coordination

The StrongARM is only used for control tasks, which
include µEngine initialization and control, input queue coor-
dination and memory management.

Communication between the IXP1200 and the host com-
puter is implemented simply by mapping the board’s SDRAM
memory to the host over the PCI bus. The IXP1200 supports
sophisticated DMA channels which can move data from
SDRAM to the PCI and can be accessed directly from the
µEngines and the StrongARM. However, we are so far unable
to use these. Instead, polling is used to communicate between
host and IXP.

NIC-FIX supports three modes with respect to packet
copying: (1) never (‘zero-copy’ mode), (2) always (‘copy
once’ mode), and (3) as needed (a mode known as ‘regular’).
In zero-copy mode, packets remain on the card, no matter
where they are accessed. In contrast, copy-once always incurs
a (single) copy, as soon as a µEngine classifies the packet as
‘interesting’. Which mode is better depends on whether code
on the host accesses the packet data frequently. If so, zero

copy is slow, as all reads incur a PCI round trip time. On the
other hand, if packets are hardly touched, zero copy is cheap.

A hybrid between the two extremes is formed by ‘regular’
mode. In this case, the packet is not moved from the card until
it is queued for userspace applications, i.e. packets may well
remain in the card’s SDRAM for their entire ‘lifetime’.

IV. THE FPL-2 COMPILER

In NIC-FIX, users express their filters in FPL-2 (the FFPF
packet language 2). FPL-2, summarized in Table I, is a new
language that compiles to fully optimised µEngine object code.
It supports all common integer types (signed and unsigned
bits, nibbles, octets, words and double words) and allows
expressions to get hold of any field in the packet header or
payload in a friendly manner. Moreover, offsets in packets
can be variable, i.e., determined by arbitrary expressions. For
convenience, an extensible set of macros allows the use of
shorthand for packet fields, e.g. instead of asking for bytes
nine and ten to obtain the IP header’s protocol field, a user may
abbreviate to ‘IP_PROTO’. We briefly explain the constructs
that may not be intuitively clear.

operator-type operator
Arithmetic +, -, *, /, %, --, ++
Assignment =,*=, /=, %=, +=, -=

<<=, >>=, &=, ˆ=, |=
Logical/Relational ==, !=, >, <, >=, <=,

&&, ||, !
Bitwise &, |, ˆ, <<, >>

statement-type operator

if/then/else IF (expr) THEN stmt1 ELSE stmt2 FI
for() FOR (initialize; test; update)

stmts; BREAK; stmts; ROF
external function EXTERN(filter, input, output)
hash() HASH(start byte, #bytes, tablesize)
return value RETURN (val)

Data type syntax

Register n R[n]
Memory location n M[n]
Packets access:
- byte f(n) PKT.B[f(n)]
- word f(n) PKT.W[f(n)]
- dword f(n) PKT.DW[f(n)]
- bit m in byte n PKT.B[n].U1[m]
- byte m in word n PKT.W[n].U8[m]
etc. (many options, including macros)

TABLE I

FPL-2 LANGUAGE CONSTRUCTS

• For resource safety, FOR loops are restricted with a pre-
determined upperbound on the number of iterations. The
BREAK instruction, allows one to exit the loop ‘early’.

• The concept of an ‘external function’ implements the
filter call semantics mentioned earlier (and illustrated in
Figure (2.b)). In FPL-2, an external function is called
using the EXTERN construct. The input and output argu-
ments allow parameters to be passed to the ‘function’ call.
For instance, ‘EXTERN(foo,x,y)’ calls filter foo,
which reads its arguments (if any) from offset x in the
filter’s MBuf and produces output, if any, in the same
buffer at offset y. In addition, the callee may return

an integer result. External functions are very useful as
they allow users to call efficient hardware or software
implementations of computationally expensive functions
(e.g., checksum calculations, hashes, or pattern matching
engines).

• FPL accesses the filter’s MBuf by means of the assign-
ment operator. For instance, one may assign the content
of a memory location to a register, perform a set of
calculations, and then assign the value of the register back
to memory. Examples of MBuf usage in FPL-2 are shown
in Figure 8. For instance, in Figure (8.B), the code keeps
track of how many packets were received on each TCP
connection (assuming for simplicity that FPL-2’s built-in
hashing function is unique for each live TCP flow).

The packet language hides most of the complexities of the
underlying hardware. For instance, users need not worry about
reading packet data in a µEngine’s SDRAM read registers
first, before accessing it. The compiler generates boilerplate
code to make such transfers transparent. Similarly, accesssing
bytes or words in memories that are not byte addressable, are
handled automatically by the compiler. If needed for efficiency,
however, users may choose to expose some of the complexity.
For instance, it is possible to declare additional memory arrays
(besides MBuf) explicitly in Scratchpad, SRAM, or SDRAM.

As it is difficult to compete both in writing efficient code
optimizers, and in providing an efficient packet processing
environment, we have chosen to exploit the existing optimizer
of the Intel µEngine compiler. For this reason, we reworked
the kernel version of the FPL-2 compiler in such a way
that it generates the filter_impl() plug-in discussed
in Section III-B. As the target language of the new FPL-
2 compiler is µEngine C, this file is subsequently wrapped
in NIC-FIX template code and compiled and optimised by
Intel’s µEngine C compiler. Finally, the code is loaded on the
card.

V. EXPERIMENTAL ANALYSIS

NIC-FIX was designed to scale with link rates, but as we do
not have a 40 Gbps testbed, we evaluate the architecture with
the setup of Section III-A, while monitoring a gigabit link. We
deliberately ‘under-engineered’ the workstation to not be able
to handle linkrate.

A. On-board processing

An important constraint for monitors is the cycle budget.
At 1 Gbps and 100 byte packets, the budget for four threads
processing four different packets is almost 4000 cycles. As an
indication of what this means, Table II shows the overhead of
some operations. Note that these results include all boilerplate
(e.g., transfers from memory into read registers and masking).

Without NIC-FIX the maximum rate at which we can
monitor the network is 602 Mbps for maximum-size packets,
not nearly line-rate. To evaluate NIC-FIX, we execute the
three filters shown in Figure 8 on various packet sizes and
measure throughput. Only A is a ‘traditional’ filter. The other
two gather information about traffic, either about the activity

(A) filter packets:

IF (PKT.IP_PROTO == PROTO_UDP
&& PKT.IP_DEST == X && PKT.UDP_DPORT == Y)
THEN RETURN 1;
ELSE RETURN 0;

FI

(B) count TCP flow activity:

// count number of packets in every flow,
// by keeping counters in hash table (of size 1024)
IF (PKT.IP_PROTO == PROTO_TCP) THEN

R[0] = Hash(26,12,1024); // hash over TCP flow fields)
// increment the pkt counter at this position
M[R[0]]++;

FI

(C) count all occurrences of a character in a UDP packet:

IF (PKT.IP_PROTO == PROTO_UDP) THEN
R[0] = PKT.IP_TOT_SIZE; // saved pkt size in register
FOR (R[1] = 0; R[1] < R[0]; R[1]++)

IF (PKT.B[R[1]] == 65) THEN // look for char ’A’
R[2]++; // increment counter in register

FI
ROF
M[0] = R[2]; // save to shared memory

FI

Fig. 8. Example FPL-2 filters

in every flow (assuming the hash is unique), or about the
occurrence of a specific byte. Note that the hashfunction
used in B utilizes dedicated hardware support. The results
are shown in Figure 9. We implemented three variations of
filter C. In C1 the loop does not iterate over the full packet,
just over 35 bytes (creating constant overhead). In C2, we
iterate over the full size, but each iteration reads a new
quadword (8B) rather than a byte. C3 is Figure 8 without
modifications.

Description Value
R[0] = HASH(26,12,256) 200 cycles
R[0] = PKT.B[0] 110 cycles
R[0] = PKT.W[0] 120 cycles

TABLE II

APPROXIMATE OVERHEAD OF SOME OPERATORS

Above a packet size of 500 bytes, NIC-FIX can process
packets at line rate for A, B and C1. This means that if
10% of the traffic consisted of packets that match filter A, the
prefiltering in NIC-FIX ensures applications like tcpdump
would also handle link rate.

For smaller packets, filters C1−3 are not able to process the
packets within the cycle budget. Up to roughly 165.000 pps
C1 still achieves throughputs of well above 900 Mbps. Beyond
that, the constant overhead cannot be sustained. C2 and C3

require more cycles for large packets and, hence, level off
sooner. This suggests that simple prefilters that do not access
every byte in the payload are to be preferred. This is fine, as
the system was intended precisely for that purpose.

Just as for the C filters, throughput also drops for the simple
filters A and B when processing smaller packets. However,
these drops occur for a different reason, namely because the
receiving µEngine simply cannot keep up.

NIC-FIX throughput

0

200

400

600

800

1000

1200

64 250 500 750 1000 1250 1400

pkt size (B)

ra
te

 (
M

b
p

s
)

 .
..

Filter A

Filter B

Filter C1

Filter C2

Filter C3

Fig. 9. Throughput for different NIC-FIX filters

B. Host communication

Figure 10 compares the three copy modes (‘zero’, ‘once’
and ‘regular’) for various scenarios: (1) the packet is refer-
enced, but dropped even before entering kernelspace FFPF,
(2) the packet is dropped in kernelspace, and (3) the packet is
accepted and sent up to userspace (incurring a copy in regular
mode). While sending at link rate, we measured how many
packets arrived at the host. It is clear for these particular tests
that overall zero-copy outperforms the other modes. We stress,
however, that this performance depends on the application.

copy strategies

0

10

20

30

40

50

60

70

80

90

100

regula r
co py

co py o nce zero co py

%
 p

kt
s

 …

.

reference

d ro p

accep t

Fig. 10. Performance in % of packets received with different copy modes

VI. RELATED WORK

Many tools for monitoring are based on BPF in the
kernel [7]. Filtering and processing in network cards is
also promoted by some Juniper routers [11] and the Scout
project [12]. Both lack features introduced in NIC-FIX such
as extended languages, in-place packet handling and flow
grouping. The SCAMPI architecture also pushes processing
to the NIC [5]. It assumes the hardware can write packets
immediately in host memory (e.g., by using DAG cards [13])
and implements access to packet buffers through a userspace

daemon. SCAMPI does not support user-provided external
functions, powerful languages such as FPL-2 or complex
filtergraphs. In programming IXPs, recent projects that have
drawn attention are NPClick [14] and netbind [15]. While
these project introduce interesting programming models they
are not designed for monitoring. Support for high-speed traffic
capture is provided by OCxMon and the high-speed monitor
developed by Sprint [16], [17], both of which use DAG cards
to capture packets at link rate.

VII. CONCLUSIONS

This paper presented NIC-FIX, an implementation of the
FFPF packet filtering architecture that enables administrators
to monitor network traffic at line rates by offloading computa-
tional tasks to the NIC. The experimental results showed that
NIC-FIX outperforms traditional packet filters and allows a
common PC to cope with line rate.

ACKNOWLEDGEMENTS

This work was supported by the EU SCAMPI project IST-
2001-32404, while Intel donated the network cards.

REFERENCES

[1] Jeffrey B. Rothman and John Buckman, “Which OS is fastest for high-
performance network applications?,” SysAdmin, July 2001.

[2] Jeffrey C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock
in an interrupt-driven kernel,” ACM Transactions on Computer Systems,
vol. 15, no. 3, pp. 217–252, 1997.

[3] Herbert Bos, Willem de Bruijn, Mihai Cristea, Trung Nguyen, and
Georgios Portokalidis, “FFPF: Fairly Fast Packet Filters,” in OSDI’04
(accepted for publication), San Francisco, CA, December 2004.

[4] Intel Corporation, “Intel IXP1200 Network Processor,”
http://developer.intel.com/ixa/, 2000.

[5] Michalis Polychronakis, Evangelos Markatos, Kostas Anagnostakis,
and Arne Oslebo, “Design of an application programming interface
for ip network monitoring,” in IEEE/IFIP Network Operations and
Management Symposium, Seoul, Korea, April 2004.

[6] Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb,
“Building a Robust Software-Based Router Using Network Processors,”
in Proceedings of the 18th ACM Symposium on Operating Systems Prin-
ciples (SOSP), Chateau Lake Louise, Banff, Alberta, Canada, October
2001, pp. 216–229.

[7] Steven McCanne and Van Jacobson, “The BSD Packet Filter: A new
architecture for user-level packet capture,” in Proceedings of the 1993
Winter USENIX conference, San Diego, Ca., Jan. 1993.

[8] IETF working group, “Internet protocol flow information export,”
http://www.ietf.org/html.charters/ipfix-charter.
html.

[9] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek,
“The click modular router,” in Symposium on Operating Systems
Principles, 1999, pp. 217–231.

[10] J.S.Turner, J.W.Lockwood, and E.L. Horta, “Dynamic hardware plugins
(dhp): exploiting hardware for high-performance programmable routers,”
Computer Networks, vol. 38, no. 3, pp. 295–310, Feb. 2002.

[11] Tom M. Thomas, Juniper Networks Reference Guide: JUNOS Routing,
Configuration, and Architecture, chapter Juniper Networks Router Ar-
chitecture, Number ISBN: 0201775921. Addison Wesley Professional,
January 2003, http://www.awprofessional.com/title/
0201775921.

[12] Andy Bavier, Thiemo Voigt, Mike Wawrzoniak, Larry Peterson, and
Per Gunningberg, “Silk: Scout paths in the linux kernel, tr 2002-009,”
Tech. Rep., Department of Information Technology, Uppsala University,
Uppsala, Sweden, Feb. 2002.

[13] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson,
“Design principles for accurate passive measurement,” in Proceedings
of PAM, Hamilton, New Zealand, Apr. 2000.

[14] Kurt Keutzer Niraj Shah, William Plishker, “NP-Click: A programming
model for the Intel IXP1200,” in 2nd Workshop on Network Proces-
sors (NP-2) at the 9th International Symposium on High Performance
Computer Architecture (HPCA-9), Anaheim, CA, February 2003.

[15] Andrew T. Campbell, Stephen T. Chou, Michael E. Kounavis, Vassilis D.
Stachtos, and John Vicente, “NetBind: a binding tool for constructing
data paths in network processor-based routers,” in Proceedings of IEEE
OPENARCH 2002, June 2002.

[16] J. Apisdorf, k claffy, K. Thompson, and R. Wilder, “Oc3mon: Flexible,
affordable, high performance statistics collection,” in 1996 USENIX
LISA X Conference, Chicago, IL, September 1996, pp. 97–112,.

[17] Gianluca Iannaccone, Christophe Diot, Ian Graham, and Nick McKe-
own, “Monitoring very high speed links,” in ACM SIGCOMM Internet
Measurement Workshop 2001, September 2001.

