
Network intrusion prevention on the network card

Herbert Bos†, Li Xu∗, Kees van Reeuwijk†, Mihai Cristea∗, Kaiming Huang‡

†Vrije Universiteit Amsterdam and ∗Leiden Universiteit, Netherlands, ‡Xiamen University, PRC
{herbertb,reeuwijk}@cs.vu.nl, {lxu,cristea}@liacs.nl, kmhuang@xmu.edu.cn

Abstract
CardGuardis a signature detection system for intru-
sion prevention that scans the entire payload of pack-
ets for suspicious patterns and is implemented in soft-
ware on a network card. The hardware that is used
on the card consists of an Intel IXP and various mem-
ories. One card can be used to protect either a sin-
gle host, or a small group of machines connected to
a switch. CardGuardis non-intrusive in the sense that
no cycles of the host CPUs are used for signature de-
tection and the system still operates at realistic link
rates. It currently employs a parallelised version of
an efficient string matching algorithm at the lowest
level of the processing hierarchy. It is used for de-
tecting the signatures corresponding to intrusion at-
tempts in the packets’ payloads. A new version sup-
porting an advanced regular expression algorithm in
the microengines of an Intel IXP network processor
is under development. For TCP flows,CardGuard
first reconstructs the TCP byte stream before apply-
ing the pattern matching engine. The system exploits
the memory hierarchy of the network card by storing
frequently needed data in fast on-chip memory, while
data that is rarely accessed is kept in slower off-chip
memory.

1 Introduction

Intrusion detection and prevention systems
(IDS/IPS) are increasingly relied upon to protect
network and computing resources from attempts
to gain unauthorised access, e.g., by means of
worms, viruses or Trojans. To protect computing
resources on fast connections, it is often desirable
to scan packet payloads at line rate. However, scan-
ning traffic for the occurrence of attack signatures
is a challenging task even with today’s networks.
Moreover, as the growth of link speed is sometimes

Presented at the IXA Education Summit 2005, Hudson,
MA, USA, September 2005.

said to exceed Moore’s law, the problem is likely
to get worse rather than better in the future. Worms
especially are difficult to stop manually as they are
self-replicating and may spread fast. For exam-
ple, the Slammer worm managed to infect 90% of
all vulnerable hosts on the Internet in just 10 min-
utes [5].

Rather than performing signature scanning at a
centralised firewall or on the end-host’s CPU, we
explore the feasibility of implementing a complete
intrusion prevention system (IPS) in software on
the network card. The notion of a distributed fire-
wall, first proposed by Bellovin in 1999, has be-
come fairly popular in recent years [1]. However,
most of these systems do not implement payload
inspection at all. Recently, Clark et al. proposed
to use FPGAs for signature detection [4]. The dis-
advantage of FPGAs and other hardware solutions
is that they are complex to modify (e.g., to modify
the detection algorithm).

The contribution of our project is that we ex-
plore for the first time one of the extremes in the
design space of an IPS, whereby the entire IPS is
implemented in software on the network card. The
card could either be a network card that is plugged
directly in an end-user’s PC, or a card sitting in
a switch/router that is connected to the end-user’s
PC. Initial results obtained with a prototype imple-
mentation are promising.

2 Distributing the firewall

Most current approaches to IDS/IPS involve a high-
performance firewall/IDS at the edge of the net-
work. All internal nodes are assumed to be safe
and all external nodes are considered suspicious.
The firewall closes all but a few ports and in an
advanced system may even scan individually pack-

1



ets for the occurrence of attack patterns. Compared
to a distributed firewall, this approach has a num-
ber of drawbacks. First, it does not protect internal
nodes from attacks originating within the intranet.
Once an internal node has been compromised, by
whatever means, all nodes in the intranet are at risk.
Second, the volume of traffic is very large, which
makes it rather hard to scan every single packet and
manage state for every flow. Often such systems
limit themselves to per-packet analysis rather than
scanning the full (reconstructed) TCP byte stream.
However, attacks may span a number of packets
each of which may be harmless in and of itself.
Hence, flow reconstruction is a requirement for re-
liable signature detection in the payload. A fourth
drawback is that centralised firewalls tend to close
all ports except a select few, such as those used for
webtraffic. As a consequence, we observe that all
sorts of new protocols are implemented on top of
port 80, defeating the purpose.

So, one may ask, why not implement the IPS
on the host CPU? There are several reasons why
a software solution on the host processor might be
problematic. First, scanning every byte of every
network packet for complex attack signatures is ex-
pensive and presents a serious load on the CPU
(some exerimental results are presented in [3]).
Second, the software on the host processor is much
more under control of end-users than a network
card. This is certainly true for a card that is placed
in a switch, physically away from the end user’s
PC. In essence, this problem has less to do with
technology and more with policies: administrators
are not too keen on trusting an end-user’s machine.

3 CardGuard

Our IPS, known asCardGuard, is intended to pro-
tect a small set of hosts connected to a switch.
Throughout this project, our goal is to make the
IPS an inexpensive device with an eye on making
it competitive with large firewalls. At the same
time, the IPS should be fast enough to handle re-
alistic loads. say a few hundred Mbps for individ-
ual users. Note that we aim to protect against un-
wanted content (e.g., intrusion attempts, or spam)
and not against denial of service attacks. Finally,
we focus on the computationally hard problem of
pattern matching, rather than the less compute in-
tensive problem of header inspection and anomaly
detection which is often already found in commer-
cial network equipment.

The IPS is in the process of being incorporated in

the FFPF framework [2]. The advantage of FFPF
is that it allows for very simple configuration and
extension by administrators. For instance, admin-
istrators may place the IPS in a graph of traffic pro-
cessing functions (such as filters, samplers, NATs,
statistical functions, etc.) and press an instantiate
button to install the customised packet processing
at a specific site. FFPF automatically maps the
functions on the different levels of the processing
hierarchy: microengines, XScale, or host kernel. In
other words, the IPS will be ‘just’ another module
that can be activated or deactivated to protect hosts
and servers according to company policy.

We have already implemented a prototype based
on the IXP1200 which shows very promising re-
sults [3]. The prototype is based on an obso-
lete IXP1200 network processor and achieves a
throughput of approx. 600 Mbps for UDP and
100 Mbps for TCP with full stream reconstruction
and while testing thousands of rules. These results
are achieved under worst-case conditions whereby
every single packet is scanned for thousands of
rules. In realistic scenarios this is never the case.
After all, if there is no known vulnerability for ap-
plicationX , there is no reason to subject traffic to
and fromX to scans that correspond to rules for
different applications.

However, the prototype uses the rather simplis-
tic Aho-Corasick (AC) string matching algorithm.
AC is fast, but too limited for intrusion detection
purposes, because for every rule it spots only ex-
act matches of single strings. In practice, we want
to be able to detect regular expressions and multi-
component strings. For this purpose, we have im-
plemented a new regular expression language for
intrusion detection that generates an optimised de-
terministic finite automaton to match much more
complex signatures. The language is tailored to
network packets and includes knowledge about
protocols in separate header files. We are currently
working on its implementation on the IXP2400.
We have also made initial steps to implement it on
an IXP2800 with an eye on providing a solution
that is intermediate between a ‘fully centralised’
and a ‘fully decentralised’ firewall.

4 Exploiting locality of reference

Scanning every byte is very expensive (especially
if we also have to reconstruct TCP byte streams),
but the problem becomes especially daunting if we
consider that there are many thousands of rules that
need to be checked. Obviously, there is no time to

2



scan every packet thousands of times. Instead, we
employ deterministic finite automata (DFA), con-
structed offline, to check all rules at once, one byte
at a time.

For instance, the well-known Aho-Corasick al-
gorithm incurs one state transition in the DFA for
every one byte that is read from the packet. Assume
for a very trivial example that we start in state 0
and read the following characters from the packet:
‘w’, ‘ o’, ‘ r ’, ‘ m’, and incur state transitions as fol-
lows: 0 → 1 → 2 → 3 → 4. Some states (e.g.,
state 4 in the example) are special and are marked
as end states. End states indicate that one or more
rules matched. For instance, if rule 1 is triggered by
the occurrence of pattern ‘worm’ and rule 2 by pat-
tern ‘another worm ’, both rules are triggered if
the latter pattern is encountered. End states trig-
ger alerts and in the case of an IPS also lead to a
connection drop.

However, while we may be able to match thou-
sands of rules at once in the above manner, the large
rule set is problematic for another reason: mem-
ory. Indeed, fast memory is the bottleneck for al-
most any high-speed network application. We sum-
marise the problem as follows: fast (on-chip) mem-
ory is not large enough and large (off-chip) mem-
ory is not fast enough. Any access to off-chip mem-
ory is extremely costly and an implementation of
CardGuardwith all rules in off-chip SRAM suf-
fered a collapse in performance, as every packet
incurred a number of memory accesses for every
state transition.

We observed that the problem is similar to the
infamous ‘memory gap’ between the host proces-
sor and main memory in normal computing, which
is solved by caching. For this reason we investi-
gated to what extent the accesses to the DFAs ex-
hibited locality of reference. By evaluatingCard-
Guard’s behaviour for thousands of snort rules
with real user traffic we found that this is in-
deed the case (some results for the AC algorithm
can be found at: http://www.cs.vu.nl/
˜herbertb/papers/ac_locality/ ). Al-
most all of the memory accesses to the DFA oc-
curred near the root of the DFA (close to state 0),
while only a few visits were made to deeper levels.
As a result, we were able to spread the DFA over
multiple levels in our memory hierarchy. Indeed,
the top levels were placed as code in the instruction
store of the individual microengines to guarantee
very fast access.

The code that is generated by our new intrusion
detection language is similarly based on DFAs.
While we are still evaluating the locality of refer-

ence of the code that is generated by our compiler,
we expect similar results. In essence, we solve the
‘memory gap’ by employing a static cache, i.e., a
cache without replacement.

5 Conclusion

CardGuardshows that the implementation of a
complete IPS in software on the network card is
feasible and offers some distinct advantages over
both centralised solutions and solutions where de-
tection is performed on the end host itself. A fully
functional prototype has been implemented and we
are close to finishing a more complex implemen-
tation on the IXP2400. More importantly,Card-
Guard explores for the first time one of the ex-
tremes in the design space for building and placing
intrusion prevention systems. Intrusion detection
and prevention is a very active field and a solution
would be hugely beneficial to many stakeholders.
For this reason alone it is important that the design
space is explored to find the most optimal solution.

Acknowledgements. We would like to thank In-
tel for donating the IXP1200 cards. Part of this
work was started in the EU FP6 Lobster project.

References

[1] Steven M. Bellovin. Distributed firewalls.Usenix
;login:, Special issue on Security, pages 37–39,
November 1999.

[2] Herbert Bos, Willem de Bruijn, Mihai Cristea, Trung
Nguyen, and Georgios Portokalidis. FFPF: Fairly
Fast Packet Filters. InProceedings of OSDI’04, San
Francisco, CA, December 2004.

[3] Herbert Bos and Kaiming Huang. Towards software-
based signature detection for intrusion prevention on
the network card. InProceedings of Eighth Inter-
national Symposium on Recent Advances in Intru-
sion Detection (RAID2005), Seattle, WA, September
2005.

[4] Chris Clark, Wenke Lee, David Schimmel, Didier
Contis, Mohamed Koné, and Ashley Thomas. A
hardware platform for network intrusion detection
and prevention. InThird Workshop on Network Pro-
cessors and Applications, Madrid, Spain, February
2004.

[5] David Moore, Vern Paxson, Stefan Savage,
Colleen Shannon, Stuart Staniford, and Nicholas
Weaver. The spread of the Sapphire/Slammer
worm, technical report. Technical report, CAIDA,
2003. http://www.caida.org/outreach/
papers/2003/sapphire/ .

3


