
Supporting Communities in Programmable Grid
Networks: gTBN

Mihai Lucian Cristea†, Rudolf J. Strijkers†∗, Damien Marchal†, Leon Gommans†, Cees de Laat†, Robert J. Meijer†∗

†University of Amsterdam

The Netherlands

{m.l.cristea, dmarchal, l.gommans, delaat}@uva.nl

∗TNO Informatie en Communicatietechnologie

The Netherlands

{rudolf.strijkers, robert.meijer}@tno.nl

Abstract—This paper presents the generalised Token Based
Networking (gTBN) architecture, which enables dynamic binding
of communities and their applications to specialised network
services. gTBN uses protocol independent tokens to provide
decoupling of authorisation from time of usage as well as identifi-
cation of network traffic. The tokenised traffic allows specialised
software components uploaded into network elements to execute
services specific to communities. A reference implementation
of gTBN over IPv4 is proposed as well as the presentation of
our experiments. These experiments include validation tests of
our test bed with common grid applications such as GridFTP,
OpenMPI, and VLC. In addition, we present a firewalling
use case based on gTBN.

I. INTRODUCTION

Cooperation between organisations, institutes and individ-

uals often means sharing network resources, data processing

and data dissemination facilities. Communities are a group of

individuals, organisations or institutes that have an agreement

about sharing services and facilities, which are accessible

only to its members. When user applications need to access

and process data from various, possibly heterogeneous, sys-

tems and locations, we need to cope with application-specific

connectivity, different access policies, and at the same time

provide services bound to the community.

The following three scenarios illustrate community-based

network services. First, many scientists are allowed to access

worldwide digital libraries on behalf of their academic organ-

isation regardless of their location (network source address).

Currently, this is only possible within the organisation domain.

Second, large-scale experiments by scientific communities

require data gathering from multiple sources such as high-

throughput sensors, lab equipments, followed by data process-

ing on multiple Grids under different ownership. This needs

infrastructure support for sharing computational, storage and

networking resources. Third, rules and laws of a country or

organization may apply to communities of which their mem-

bers are located worldwide and interconnected over public

and private networks and hence, the network has to guarantee

separation of these communities to support judicial territories.

The three examples all require a form of traffic identification

and control to provide specific services. However, the current

Internet model offers only best-effort end-to-end connectivity.

In this paper, we address network support for binding spe-

cialised, application-specific services to communities and their

applications.

An alternative to the Internet model is programmable net-

works. In programmable networks, network elements become

fully programmable devices. By programming the collection

of network elements a network can offer specific services,

and implement any form of traffic identification and control.

Efforts in programmable networks have led to frameworks,

such as integrated and discrete active networks [1], and among

others resulted in test beds like Tempest [2], Switchware [3]

and Capsules [4]. Although less flexible, optical and hybrid

networking technologies (e.g., UCLPv2 [5], GMPLS) are now

preferred over programmable network solutions to provide

application controlled end-to-end connectivity. Alternative to

current programmable network projects such as GENI [6],

OpenFlow [7] offers a pragmatic, intermediate solution based

on flows to allow researchers to experiment with new network

services and communication protocols, and also have vendor

support. While programmable network architectures in general

follow a network centric approach, the User programmable

Virtualized Networks (UPVN) [8] architectural framework

takes an application centric approach by allowing network ser-

vices to be defined by distributed and networked applications

themselves. The UPVN architectural framework considers

the network and its services as software, and defines the

elementary components to develop specialised services from

applications.

In this paper, we propose an architecture, generalised Token

Based Networking (gTBN), that provides binding between

distributed networked applications and programmable network

services. gTBN uses the concept of Token Based Network-

ing [9] to associate streams with UPVN services by tagging

packets with a service identifier. These identifiers are inserted

in the process of network resource allocation and management

and are independent of communication protocols. We present

a reference implementation of the gTBN architecture in IPv4

and a firewall use case as illustration of an alternative approach

for domain protection in Grid networks. In a broader context,

gTBN allows communities to define their own personal Inter-

net providing network services that match their requirements.



The remainder of this paper is organised as follows. The

gTBN architecture is presented in Section II, followed by

implementation details in Section III. We evaluate a firewall

use case for Grids and show the results of our experiments with

streaming, client/server and message passing applications in

Section IV. In Section V, related work in the field is compared

and discussed, followed by the conclusions in the last section.

II. GTBN ARCHITECTURE

The Token Based Networking (TBN) architecture was ini-

tially introduced to establish lightpaths over multiple network

domains [9]. Lightpaths are setup on behalf of authorised

applications that need to bypass transit networks. On the one

hand, TBN uses a secure signature of pieces of an IP packet

as a token that is placed inside the packet to recognise and

authenticate traffic. The applications traffic is first tokenised by

the TokenBuilder of a local domain (e.g., a campus network),

after which it is enforced by the TokenSwitch at each inter-

domain controller along the end-to-end path (see Figure 1).

On the other hand, TBN makes use of a separate service

and control plane. The control plane consists of a AAA
server in the push sequence as explained by the Authorisation

Authentication Accounting (AAA) framework (RFC 2904).

The AAA server acts as an authority that is responsible for the

reservation and provisioning of the end-to-end paths, possibly

spanning multiple network domains.

Token
Switch to transit

Network

Network domain

AAA

Token
Builder

ApplicationApplication
Token
Switch

Lightpath1

Lightpath2

to transit
Network

Network domain
Campus network

Fig. 1. On behalf of an application, the AAA authority provisions the
network resources required for an end-to-end lightpath that may cross multiple
domains. At runtime, the application traffic is first tokenised by TokenBuilder
and then subsequently enforced by each TokenSwitch along the lightpath.

Making tokens protocol independent has an important ad-

vantage; the token can be regarded as an aggregation identifier

to a network service. Generally, we see four types of aggre-

gation identifiers that can be combined, as follows:

• identifier to point a service to the NE (e.g., a multi-cast,

or transcoding);

• identifier that defines the service consumer (e.g., the grid

application);

• identifier that defines the serviced object (e.g., the net-

work stream);

• identifier that defines the QoS (security, authorisation,

robustness, deterministic property, etc.).

First, a token can bind to different semantics and services

(e.g., network services for a user, a group of users, or an

institute). The semantics that is referred to by a token (e.g.,

a certain routing behaviour) can be hard-coded into a switch

or the token can refer to a stored aggregation identifier that

points at the specific behaviour in a programmable network

device. Hence, a token provides a generic way to match ap-

plications to their associated network services. Second, tokens

can be either embedded in the application generated traffic or

encapsulated in protocols where embedding is not supported,

such as in public networks. Third, tokens can also provide a

general type of trusted and cryptographically protected proof

of authorisation with flexible usage policies.

A. UPVN

UPVN describes the architectural principles for orchestra-

tion and manipulation of network services in programmable

networks. UPVNs enable applications to upload code to net-

work elements (NE) in the form of software objects called ap-

plication components (AC). ACs enable implementation of not

foreseen and application-specific services and allow computer

programs to access their service interfaces through network

components (NC). NCs act as proxies that provide redirection,

visualisation or composition of AC interfaces and can be

included as part of distributed and networked applications. The

architectural framework is shown in Figure 2.

ApplicationApplication

NC

Application

NE

AC

NE

ACAC
NENE

ACAC

NCNC

Fig. 2. Relating the UPVN components. NCs are the manifestation of
the network in applications. Conversely, ACs manifest as application-specific
network services. The interface between NCs and ACs depends on the
application domain.

In general, programmable networks differ in how appli-

cations interface with network nodes. Basically there are

three variants: agents, active messages (also known as active

networks) and remote method invocations (RMI). In short,

agents are programs that travel from node to node, active

messages are network packets extended with application code,

and webservices are a good example of RMI. UPVN gener-

alises network/application communication by considering the

network as an integrated part of the application. UPVN regards

NEs as software components with NCs as their proxy objects,

which support agent, active message or RMI communication.

NCs can also be part of applications designed for other

purposes, such as Mathematica or Distributed Transaction

Monitors. This allows creation of new applications from

existing ones to provide more features to network users.

Such features include authorised resource sharing, fine-grained

binding of applications to networks, and building communities

over public networks.



B. TBN + UPVN = gTBN

UPVNs enable applications to exploit and integrate the

freedom programmable networks offer. TBN provides an au-

thorisation architecture with a clear binding process between

applications and network functions or resources. In generalised

Token Based Networking (gTBN), the network infrastructure

and network interactions are generalised from the classic

end-to-end circuits, lightpaths to multipoint-to-multipoint net-

works.

NENE

ACAC

3rd PartyCommunity

Specialized
Network
Service

Policies
and RulesApplication

Negotiate
Service

Token

ACAC

1

2

3

Fig. 3. Applications from a community are associated with tokens according
to existing policies 1©. A third party manages the network resources and
provisions the required services into the NEs 2©. At runtime, tokenised traffic
sent by applications is recognised and authenticated by the network 3©.

The gTBN architecture consists of three parts, as illustrated

in Figure 3. First, each community with specific policies

and rules needs to be associated with a token 1©. A third

party implements the negotiation, filtering and reservation of

the resources and services using a AAA framework. The

implementation of this entity depends on the context, such

as resource brokers in Grids or network operators in private

networks. Second, specialised network services (e.g., routing,

transcoding) for a community are provisioned in the network

as required by the applications through their associated tokens.

Because the network cannot know in advance which services

or combination of services a community may require, spe-

cialised services must be uploaded to a network as ACs 2©.

Last, when a member of a specific community executes an

application, the member or its secure execution environment

tokenises the produced traffic 3©. The network recognises the

tokenised traffic and applies the specialised pre-programmed

services.

Figure 4 shows an example application of gTBN. Two com-

munities with its member applications are located on different

network domains. For example, Application 1 and 2 belong

to community B, and Application 3 belongs to community A.

The two communities are each associated with a token, gray

and white, respectively. Let us assume that the policy of a

network domain is that only members of the communities

are allowed to be routed through the network. Application 1

and Application 2 are both members of community B and

therefore, they can communicate. Correctly tokenised traffic

will be routed using default IP mechanisms. However, to

communicate with Application 3, Application 1 also needs

credentials to access the resources of community A. gTBN

supports binding of multiple domain-specific services into a

single token. This allows a member of both communities A

and B to access each others network domains.

Community A

Community B
App 1

App 2

App 3

+

GW

GW

Fig. 4. Application 1 can communicate with Application 2 in community B
by using the associated token. To communicate with Application 3, the
message needs to contain both tokens of communities A and B.

III. IMPLEMENTATION

The complete architecture is composed of three compo-

nents, as previously presented in Section II-B and Figure 3.

The first component is a programmable network element

that implements the network behaviour by recognising the

authenticity of the tokenised traffic. Enforcing the authenticity

of tokens ensures the correct execution of the intended network

behaviour (see Section III-A). The second component runs on

the end-user host and binds the token to the application’s traffic

(see Section III-B). The third component, which is beyond the

scope of this paper, associates a token to the policies applied

to the communities; interested readers are referred to [10].

Currently, our implementation binds application’s traffic to

tokens at the IP layer, and enforces the tokenised traffic at

the IP layer, too. It is important to notice that according to

the RFC 791 the IP option field, we used for tagging, must

be implemented by all IP modules. However, in practice we

found that the RFC is not respected by all Internet routers. In

a future implementation, though, we will put the tags into an

IPv6 extension header.

A. Programmable Network Element

Our implementation of the network elements (NEs), called

Token Based Switch (TBS), must be able to enforce specific

network behaviour (e.g., routing, multicast) on per-packet

basis as required by the tokens the packets carry. Currently,

it is possible to implement such programmable NEs using

specialised hardware (e.g., network processors, FPGAs) or

using powerful PCs. We have chosen to use the network

processors because we think that such packet enforcement

systems, working at the Ethernet layer, will be located at

the gateways of the network domains and hence, they need

to process packets at multi-gigabit speeds. For example, Intel

IXP2850 network processor provides high speed packet han-

dling (up to 10Gbps) and on-chip crypto hardware supporting

commonly used algorithms: 3DES, AES, SHA-1, HMAC.

Although the current powerful PCs are able to route packets



at multi-gigabit speeds, they still lack of ability to perform

cryptographic algorithms at line rates despite the multi-core

architecture.

The current Token Based Switch (TBS) implementation

uses the dual network processors hardware platform (see

Figure 5). Each NPU contains on-chip 16 multi-threaded RISC

μEngines running at 1.4GHz, a fast local memory, registers

and two hardware crypto units for encryption/decryption.

The μEngines are highly-specialised processors designed for

packet processing, each running independently from the others

from private instruction stores of 8K instructions

As illustrated in Figure 5, the incoming packets are received

by the Ingress NPU. These packets can be processed in parallel

with the help of the μEngines. The packets are subsequently

forwarded to the second NPU. The second NPU can process

these packets and then decide which will be forwarded out of

the box and which outgoing link will be used.

SRAM
SRAM

SRAM
DRAM

DRAM
DRAM

Egress NPU
IXP2850

Ethernet
100 Mbps

PCI 64/66
Chip

Interface
Fabric

2

SRAM
SRAM

SRAM
DRAM

DRAM
DRAM

IXP2850
Ingress NPU

Ethernet
100 Mbps

PCI 64/66

3

10 x 1Gb/s

4

1

CSIXSPI

Fig. 5. IXDP2850 development platform uses dual IXP2850 NPUs 1© & 2©,
10×1 Gbps fibre interfaces 3©, a loopback fabric interface 4©, and fast data
buses (SPI, CSIX). Each NPU has several external memories (SRAM, DRAM)
and its own PCI bus for the control plane.

In the current implementation, the TBS uses an authentica-

tion application component (AC) combined with a routing net-

work behaviour. In other words, the specific routing service run

on each authenticated packet. A packet is authenticated when

the built-in token (stored in the IPv4 option field) matches the

result of applying a keyed Hash Message Authentication Code

(HMAC) algorithm over the entire IP packet, or over part of

the packet. Our implementation uses the first 64 bytes of the

packet to ensure constant speed processing while the HMAC

algorithm creates a one way hash that is a key-dependent

(see RFC 2401). In our implementation we opted for a strong

proof of authorisation by means of HMAC-SHA1 that is also

hardware supported by the IXP2850 network processor.

Figure 6 shows the token creation and checking mechanism.

For each received packet, the TBS checks whether the current

packet has the appropriate IP option field. On success, a

Global Resource Identifier (GRI) field, identifying a specific

application instance, is extracted 1© to refer to the network

behaviour needed to be applied to the packet. For example, the

expected network behaviour is authentication and hence, the

GRI points to an authorisation table (AuthTable) of an already

deployed authentication AC. Next, the authentication AC uses

IPv4_packet: IP_hdr Payload

Mask:
Hdr_len tot_len Hdr_chks

Data to
encrypt

TokenKey
(20bytes)

HMAC-SHA1

64 bytes

PayloadToken

IP option: 24 bytes

(20 bytes)

TTL

GRIIP_hdr

GRI TokenKey

AuthTable

1

2
3

Fig. 6. The token checking mechanism uses the GRI part of IPoption tag to
point into AuthTable of authentication component 1© in order to extract the
TokenKey 2© needed to perform the HMAC-SHA1 over the masked packet
data. The packet is authenticated when the encryption result matches the built-
in token 3©.

the GRI entry to retrieve the encryption key (TokenKey),

already provisioned in the TBS 2© by a AAA authority. Then,

the first 64 bytes of the packet data are masked and then

are encrypted using the HMAC-SHA1 with the TokenKey 3©.

The result is compared with the remaining of the option field.

When they match, the authentication AC authorises the packet

to be forwarded to an adequate port. Otherwise, the packet is

dropped. Note that although in the paper we refer to token as

an entire tag built-in the packet, in our implementation, the tag

consists of two parts: a plain-text aggregation identifier (GRI)

and an encrypted token.

Summarising, TBS is an implementation of application

component (AC) inside programmable NE, which specifically

performs packet authentication for access control at multi-

gigabit speeds. However, we mention future implementations

of other ACs that will perform QoS for the purpose of

providing deterministic communication in grid networks (e.g.,

processing physics experiment data), will assure multi-level

security for military networks, will provide robustness in

redundant networks.

B. Binding token to applications

In our implementation, the binding of token to an appli-

cation is done on a per-socket basis in order to offer the

fine granularity requested by grid applications. Working at

socket granularity allows binding distinct streams in the same

application to distinct network services. In order to support

the token insertion into the optional field of IPv4 packet it is

needed to modify the vanilla Linux kernel1. This modification

exposes the token to socket binding mechanism through the

setsockopt() function of the socket API.

From a practical point of view, it would not be accepted

an approach where all the applications need to be modified

and recompiled to benefit of a specific token based network

service. In order to provide seamlessness integration of gTBN

1The patch can be retrieved at the address: http://svn.cristomatics.eu/
ixp2xxx/token patch



we developed a middleware using an interposition system

such as presented in [11]. An interposition system extends

the default socket’s function without the need to recompile

the application. However, making an unique interposition

system working for all imaginable application’s scenarios is

not possible due to the large variety of socket’s usage mech-

anisms. To overcome this limitation we preferred to support

different classes of interposition behaviour, called hijackers.

These hijackers are installed in the hosts and automatically

selected at application start-up via a rule matching algorithm.

The matching algorithm allows users and grid administrators

to finely tune how the applications’ traffic is tokenised by

selecting the proper hijacker. We currently support the follow-

ing entries in the selection rules: application name, domain,

protocol, source/destination ip and port. The rules are checked

on a per socket basis; when a rule matches the associated

hijacker is started and bound to the socket. We have developed

three different hijackers:

• hijacker tokeninjector, in which each socket that matches

the activation rule is bound to a token unique for the

application. The token is retrieved from an environment

variable.

• hijacker simpletokenizer, in which each socket that

matches the activation rule is bound to a token that is

retrieved from a third party supervisor (see Section IV-B).

The token is unique for a pair of source-ip/destination-ip.

This hijacker supports a per-node traffic management.

• hijacker magiccarpet, in which each socket that matches

the activation rule is bound to a token retrieved from

a third party supervisor (e.g., a web-server). The token

is unique for a pair of source-ip:port/destination-ip:port.
Such a hijacker allows to differentiate, at the networking

level, the different data streams of one application; this

behaviour is needed in order to support ftp or GridFTP

applications that may use distinct parallel socket streams.

The implementations of these three hijackers are used to

evaluate several common applications used in grids, as shown

in Section IV-B.

IV. EVALUATION AND USAGE

The validation of the approach follows a bottom-up pattern.

First we evaluate the performances of Token Based Switch

(TBS), our current implementation of gTBN based on the

IXP2850 network processor. Then we evaluate the robustness

of the middleware by testing commonly used grid applications.

In the end we present a use-case in which we applied gTBN

to implement a domain firewalling solution for Grids.

A. Token Based Switch benchmark

In order to benchmark our TBS implementation, we built a

test bed, as illustrated in Figure 7, composed of four hostPCs

(das1 ... das4) interconnected through a TBS. We run the fol-

lowing scenario: das2 send tokenised traffic (generated by iperf

tool as shown in Figure 8. 1©) to das3 through the TBS and at

the same time, das1 sends traffic to das4, but this traffic is not

tokenised and hence, it is rejected by TBS (see Figure 8. 3©).

Such scenario simulates a case when external ‘un-authorised’

traffic tries to pass or overload a TBS. We measure the effects

of such scenario by monitoring the throughput reported by

iperf tool on the tokenised traffic.

TBSdas1

das2 das4
A

LC
A

TE
L S

W

C
IS

C
O

 S
W

das3

10.1.0.27

10.1.0.28

10.1.0.29

10.1.0.30

0

7 7

1

9

Test:
das2�das3, das4: 

tokenised traffic (iperf)
das1: normal traffic to 

overload TBS

Fig. 7. Test bed setup for testing TBS.

As shown in Figure 8. 2©, there is no significant influence

on the TBS throughput due to the injection of un-authorised

traffic. We notice that we can increase the relevance of the

evaluation by injecting ‘real’ traffic such as including random

packet sizes, tokenised, un-tokenised, and invalid tokenised.

While we could not perform such tests at the moment due

to lack of professional traffic generators running at multi-

gigabit speeds, in [9] we estimated the outcome by using the

Intels cycle accurate IXP simulator. The bandwidth correctly

processed by a TBS implemented on the dual IXDP2850

development platform is around 2.5 Gbps.

� �� ��� ��� ��� ����

���

���

���

���

���

���

	��


�
�
��

��
��

���
�
��

��

���������������� ������������

� �� ��� ��� ��� ����

�����

������

������

������

!�
��
��
"
���
��

��
 �
��
�

� �� ��� ��� ��� ���

�"�

�

�����

������

������

������

!�
�
��

��
��

 �
��
�

���������������� ��� �����

������������������ ��������	
���

Fig. 8. Cross-domain communication between Das2-Das4 begins at 40s and
ends at 300s. The traffic is successfully accepted and transmitted. Additionally,
un-tokenised traffic is generated between 80s and 190s and dropped.



B. Interception middleware robustness

We evaluated the ability of our interposition environment

to bind applications to tokens, implemented as described

in Section III-B, by investigating the behaviour of different

applications as regard to their socket behaviour. We run the

applications over the interposition system and checked with

tcpdump tool that the applications have their traffic properly

tokenised. We repeated the tests on a large panel of real-

life classes of applications used in grid: client-server, message

passing, and data streaming, described as follows:

• client/server: A server waits for incoming connections

and starts a user specific session when a client connects

to it. This behaviour is typically met in case of file

transfer applications. The best way to support these kind

of applications is to use the hijacker magiccarpet as this

hijacker is the only one capable to associate to each of

the connected client a unique token based on the pair of

end-point of the data channel. We successfully tested the

following ftp servers: muddleftp and vsftp with the fol-

lowing clients: netkit-ftp and gftp. We also successfully

tested the grid-ftp application from the globus toolkit.

• message passing: Message passing libraries are impor-

tant in grids as they provide a widely used distributed

programming paradigm for scientific application. We

used the hijacker tokeninjector to bind the token to each

of the IPv4 sockets created by the OpenMPI library. By

tagging the whole traffic of a distributed application we

were able to route the messages through reserved network

links, thus providing guarantees on the quality of service.

• streaming: The streaming applications, like video

streaming or continuously reported data from sensors

in live scientific experiment are seldom presented in

grids due to the impossibility to guarantee on the quality

of service of grids network. However, we experienced

the VLC real-time video streaming software with the

hijacker tokeninjector and iperf for high bandwidth data

streaming. Iperf was run with ‘-P’ option for the purpose

to check the hijacker behaviour with sockets used by a

typical multi-threaded application.

All of these tests show that it is possible to deploy a working

grid environment using a controllable interposition system as

a network component (NC) proxy object between applications

and network. The impact of this environment on the network

performance of the applications is only visible during the

socket creation and connection stage.

C. Using gTBN for domain firewalling

It is common to have grids interconnected by high-speed

backbones, but in many cases they also offer connectivity to

Internet. In this case, it is necessary to use a protection mech-

anism such as Firewalling, VPN, or dedicated connections to

isolate and guard the clusters from undesired users.

As a use case, we describe a simpler solution to the existing

firewall problem for grid applications (e.g., GridFTP) that open

multiple ports dynamically and make difficult or impossible to

filter. Our solution based on gTBN is different than existing

solutions by not using any protocol related information on the

traffic that must pass the firewall, but it rather uses encrypted

tokens built-in the packets based on which the packet is

authenticated to pass the firewall.

Fire
Wall
Fire
Wall

Fire
Wall
Fire
Wall TBS-IPTBS-IP

client1

Transit

client2 gridFTP server

Demo:
1. One ftp session per path:

1. Client1 => A
2. Client2 => transit

2. Multiple sessions per path
1. Client1, Client2 => A
2. Client3 => B

A

B

supervisor WS

gridFTP clients

client3

Fig. 9. A firewall setup for grids.

Figure 9 shows the case of two distinct network domains

where each is located behind a firewall being interconnected by

a public network and dedicated connections (e.g., lightpaths).

Each firewall consists of a TBS being provisioned by an

authority: a web-server called supervisor. The test bed also

includes four host machines interconnected as follows: three

GridFTP clients located in one domain and one GridFTP

server placed on the other domain.

The middleware we installed on all hosts uses the hi-
jacker magiccarpet interposition environment in order to tag

the traffic of the GridFTP applications. When one host starts a

GridFTP client application in order to connect to the GridFTP

server, it first gets an authorisation ticket from the supervisor.

The authorisation ticket contains a unique identifier for the

requested connection, the so-called Global Resource Identifier

(GRI) as illustrated in Figure 6, and a TokenKey needed to

encrypt part of each outgoing packet in order to obtain an

encrypted token. Second, each outgoing packet that belongs

to the socket(s) opened by the GridFTP application gets a tag.

The tag is composed of two parts, which are concatenated

as follows: (1) GRI and (2) the encrypted token obtained as

a cryptographic result performed over the packet as shown

in Figure 6. Next, the traffic passing the TBSes is checked

by looking at the tag each packet carries. If the packet is

authenticated to pass the firewall, then it will go out to

the provisioned path towards the GridFTP server. A similar

scenario of traffic tokenising happens on the way back from

server to client. Note that when the supervisor received a

request for path-setup from client to server, it has sent an

authorisation ticket to all systems involved in the connection:

both TBSes and server.

Summarising, using this test bed we investigated the data

flow and ensure that the un-tagged packets from one domain

are rejected at the entry point of the other domain and hence,



only an authorised application correctly bound to a token can

enter into a foreign domain. This use case was presented in a

live-demo at OGF23 as an alternative firewall solution for grids

that authenticates the traffic at the granularity of applications

regardless of their distributed hosts. To our knowledge, such

a fine-grain authentication is not possible using VPNs and is

difficult to achieve with authenticating firewalls where the user

application must register its flows from all nodes beforehand.

V. RELATED WORK

The need for access control, application-specific services,

or QoS support for high performance e-science applications

has lead to programmable networks and, more recently, to

high performance networks with advanced QoS and path

configurability. We consider two main topics related to gTBN.

First, current strategies and technologies to increase network

flexibility within the existing TCP/IP models. Second, the

history of programmable networks from active networks to

programmability in ATM networks.

A. Introducing flexibility in networks

Currently, there are several network control technologies

to help in building network communities at various network

communication layers, some of which combining the flexibil-

ity of programmable networks with end-to-end provisioning.

Furthermore, some recent hybrid solutions also offer cross-

layer circuit provisioning. In order to refer the related work in

our context, we categorise the existing network technologies

with their control features in three classes: (1) embedded,

(2) overlay, and (3) hybrid.

The embedded class consists of all network control mecha-

nisms based on embedding specific information (e.g., tags, la-

bels) into the traffic. One example of the embedded approach is

Provider Backbone Traffic (PBT). PBT [12] is a VLAN-based

solution enhanced to provide a good degree of control over a

cluster network as well as on their interconnection backbones.

Another example is Multi-protocol Label Switching (MPLS).

MPLS was initially developed to speed up switching time by

provisioning route decisions in advance, but is now widely

used to establish support circuit switching on packet routed

networks, additionally with traffic engineering. It may con-

nect Ethernet or optical circuit-based clients with IP packet-

switching clients. Moreover, amongst the latest achievements

in the control of IP networks are provided by the extended

MPLS solutions to support multi-domain networks based on

a common policy system, the so-called generalised MPLS

(GMPLS).

The overlay class includes all technologies that offers net-

work services by encapsulation over existing network tech-

nologies, such as IP. Virtual Private Networks (VPN) is a

well known overlay solution to connect private networks or

applications through public, untrusted networks. (VPN) based

solutions offer authenticated connections over IP. Furthermore,

there were past attempts to build dynamic VPNs with fine-

grained control down to the low-level network resources, such

as the work in [13]. Another overlay network on top of IP,

TOR [14], encrypts and obfuscates routing and connections

for building an anonymous network.

The hybrid class contains solutions, which combine the

existing technologies into one hybrid framework. Hybrid so-

lutions try to achieve the advantages of both circuit switching

and packet routing technologies. Examples of such solutions

are, UCLPv2 [5], V-STONES [15] and DRAGON [16].

Although the above classified technologies provide network

control and dynamic provisioning of networks, they all limit

to end-to-end connections. However, management of dynamic

communities is a topic recently tried with MPLS-based VPNs

in [17].

In addition to the three classes of control, the middleboxes

in a data centre (e.g., firewalls, load balancers) offer a different

form of control. Firewalls protects private domains from

malicious usage by filtering traffic, only allowing specific ports

or types of connections. A firewall needs to be well instructed

on the traffic it needs to pass or deny. This is specifically

noticeable with packet filtering firewall and statefull firewall

as they do block/allow access based on specific protocol-

related information of the traffic (e.g., port numbers). In

order to facilitate the users to bypass such firewalls several

traversal techniques are implemented in standard middleware

like in [18]. Authenticated firewalls, such as NuFW [19] and

authpf [20], overcome some of the limitations of protocol

based firewalls by introducing authentication prior to allowing

access. We also notice a recent effort in building of more

flexible and easier to deploy middleboxes by using a policy-

aware switching layer (PLayer) [21]. This PLayer implements

the translated policies as specified by an administrator and

consists of specific routing tables and switch instructions.

Although using PLayer in dedicated pswitches ensures the

correctness of a certain possibly complex setup, this approach

limits to an existent set of switch capabilities and still use

the complex traffic classification on checking various protocol

header fields.

B. Programmability

Instead of providing flexibility within the context of TCP/IP,

another approach is to consider the network itself as pro-

grammable. Active networks is the most notable result of

the efforts to develop programmable network architectures.

The first trials to build active networks date since the ATM

age in 90s, when there was a lot of work involved such as

the Tempest project [2], Capsules [4], elastic networks [22],

SwitchWare [3], xBind. They tried to introduce QoS into

ATM networks by enhancing the networks with programmable

devices that would process traffic or would self-program based

on built-in tags or programs, respectively. Unfortunately, the

research on active networks diminished considerably after

the year 2000. Around the same time, optical networks gave

enough bandwidth and brought different mechanisms for QoS

through the end-to-end lighpaths provisioning. In the end,

active networks have not been adopted as a solution to increase

flexibility in networks.



In recent years, new developments have led to additional

research and new application domains, such as building dy-

namic communities in networks for the purpose of sharing

resources in a secure manner. In the post ATM era, Kindred

and Sterne [23] were among the first to describe and address

the problem of building dynamically secure network com-

munities over public Internet, though their solution offered a

coarse-grain granularity of community members at the level of

firewall-protected domains. However, the authors experience

shows the difficulty to build an effective community over ex-

isting organisations which have different policies and cultures

and hence, different ways to distinguish the members from

non-members. In other words, communities need a simple way

for legacy applications and users to recognise their member-

ship in an existing network infrastructure. Moreover, in the

context of grids, a community builds up at the granularity of

group members (e.g., user applications or jobs) and eventually

different levels of group membership.

VI. CONCLUSIONS AND FUTURE WORK

The starting point of this work is our believe that in the

context of grids, users and communities need the freedom

and flexibility to implement their specific network services.

To reach this target we introduced the generalised Token

Based Networking (gTBN) architecture that combines the pro-

grammability of the User Programmable Virtualized Network

architectural framework with Token Based Networking. The

proposed reference implementation is based on programmable

network processors and commodity PCs, and employs an

interposition system for seamless integration of gTBN with

existing grid applications. A gTBN test bed was set-up and

its performance evaluated through a firewalling use case. We

also challenged the robustness of the interposition system by

executing a set of complex standard Grid applications on our

gTBN test bed. These experiments convinced us that multi-

gigabit programmable networks is an achievable target for

today’s Grid networks.

We consider this work as a first step on the road towards

a complete Grid implementation of the User Programmable

Virtualized Network architectural framework. While still in

its infancy, we are now investigating using gTBN for fine-

grained access control in dynamically switchable lightpaths

of Starplane, the interconnection network of the distributed

computing cluster DAS-3 [24]. Furthermore, we are devel-

oping application components that implement more advanced

network services like QoS and multi-cast.

Future extensions of this work will include improved re-

source allocation and brokering, and will enable integration

of gTBN into the big picture of Grid’s middleware resource

and service management, such as VLAM-G [25].

ACKNOWLEDGEMENTS

The authors wish to thank to Herbert Bos and Yuri Dem-

chenko for their useful comments. This work was supported

by the EU IST-034115 Phosphorus project.

REFERENCES

[1] D. L. Tennenhouse and J. M. Smith, “A survey of active network
research,” IEEE Communications Magazine, vol. 35, pp. 80–86, 1997.

[2] J. van der Merwe, S. Rooney, L. Leslie, and S. Crosby, “The tempest-
a practical framework for network programmability,” Network, IEEE,
vol. 12, no. 3, pp. 20–28, May/Jun 1998.

[3] D. Alexander, W. Arbaugh, A. Keromytis, and J. Smith, “A secure active
network environment architecture: realization in switchware,” Network,
IEEE, vol. 12, no. 3, pp. 37–45, May/Jun 1998.

[4] D. L. Tennenhouse and D. J. Wetherall, “Towards an active network
architecture,” Computer Communication Review, vol. 26, no. 2, 1996.

[5] E. Grasa, G. Junyent, S. Figuerola, A. Lopez, and M. Savoie, “Uclpv2:
a network virtualization framework built on web services,” Communi-
cations Magazine, IEEE, vol. 46, no. 3, pp. 126–134, March 2008.

[6] Global Environment for Network Innovations, [Online; accessed 13-
August-2008]. [Online]. Available: http://geni.net

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[8] R. J. Meijer, R. J. Strijkers, L. Gommans, and C. de Laat, “User
programmable virtualized networks,” in Proceedings of the 2nd IEEE
International Conference on e-Science and Grid Computing, 2006.

[9] M. L. Cristea, L. Gommans, L. Xu, and H. Bos, “The token based
switch: Per-packet access authorisation to optical shortcuts,” in Proceed-
ings of IFIP Networking, 2007, pp. 945–957.

[10] Y. Demchenko, A. Wan, M. Cristea, and C. de Laat, “Authorisation
infrastructure for on-demand network resource provisioning,” Proceed-
ings of the 9th IEEE/ACM International Conference on Grid Computing,
Sept. 2008.

[11] D. Thain and M. Livny, “Parrot: Transparent user-level middleware for
data-intensive computing,” in Workshop on Adaptive Grid Middleware,
2003.

[12] G. Goth, “Major players battle over layers: Layer-2 and layer-3 vendors
tussle over metro links,” IEEE Internet Computing, vol. 11, no. 5, pp.
7–9, 2007.

[13] R. Isaacs, “Lightweight, dynamic and programmable virtual private
networks,” Proceedings of IEEE 3rd Conference on Open Architectures
and Network Programming OPENARCH, Mar 2000.

[14] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-
generation onion router,” in SSYM’04: Proceedings of the 13th confer-
ence on USENIX Security Symposium. Berkeley, CA, USA: USENIX
Association, 2004, pp. 21–21.

[15] W. Sun, G. Xie, Y. Jin, W. Guo, W. Hu, X. Lin, M.-Y. Wu, W. Li,
R. Jiang, and X. Wei, “A cross-layer optical circuit provisioning frame-
work for data intensive ip end hosts,” Communications Magazine, IEEE,
vol. 46, no. 2, pp. S30–S37, February 2008.

[16] T. Lehman, J. Sobieski, and B. Jabbari, “Dragon: a framework for
service provisioning in heterogeneous grid networks,” Communications
Magazine, IEEE, vol. 44, no. 3, pp. 84–90, March 2006.

[17] C. Phillips, J. Bigham, L. He, and B. Littlefair, “Managing dynamic
automated communities with mpls-based vpns,” BT Technology Journal,
vol. 24, no. 2, pp. 79–84, 2006.

[18] J. Maassen and H. E. Bal, “Smartsockets: solving the connectivity
problems in grid computing,” in Proceedings of the 16th international
symposium on High performance distributed computing. ACM, 2007.

[19] NuFW - An Authenticating Firewall, 2008, [accessed 06-August-2008].
[Online]. Available: http://www.nufw.org

[20] OpenBSD AuthPF, 2008, [accessed 06-August-2008]. [Online].
Available: http://www.openbsd.org/faq/pf

[21] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching
layer for data centers,” SIGCOMM, vol. 38, no. 4, pp. 51–62, 2008.

[22] H. Bos, R. Isaacs, R. Mortier, and I. Leslie, “Elastic networks: An
alternative to active networks,” Journal of Communications and Systems,
vol. 3, no. 2, pp. 153–164, Jun. 2001.

[23] D. Kindred and D. Sterne, “Dynamic vpn communities: Implementation
and experience,” discex, vol. 01, p. 0254, 2001.

[24] The Distributed ASCI Supercomputer 3, [accessed 13-August-2008].
[Online]. Available: http://www.cs.vu.nl/das3

[25] V. Korkhov, D. Vasyunin, A. Wibisono, V. Guevara-Masis, A. Belloum,
C. de Laat, P. Adriaans, and L. Hertzberger, “Ws-vlam: towards a
scalable workflow system on the grid,” in WORKS. ACM, 2007.


