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Abstract. The FPL-3E packet filtering language incorporates explicit support
for reconfigurable hardware into the language. FPL-3E supports not only generic
header-based filtering, but also more demanding tasks such as payload scanning
and packet replication. By automatically instantiating of hardware units (based
on a heuristic evaluation) to process the incoming traffic in real-time, the NIC-
FLEX network monitoring architecture facilitates very high speed packet pro-
cessing. Results show that NIC-FLEX can perform complex processing at giga-
bit speeds. The proposed framework can be used to execute such diverse tasks as
load balancing, traffic monitoring, firewalling and intrusion detection directly at
the critical high-bandwidth links (e.g., in enterprise gateways).
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1 Introduction

There exists a widening gap between advances in network speeds and those in bus,
memory and processor speeds. This makes it ever more difficult to process packets at
line rate. At the same time, we see that demand for packet processing tasks such as
network monitoring, intrusion detection and firewalling is growing. Commodity hard-
ware is not able to process packet data at backbone speeds, a situation that is likely to
get worse rather than better in the future. Therefore, more efficient and scalable packet
processing solutions are needed.

It has been recognised that parallelism can be exploited to deal with processing at
high speeds. A network processor (NP), for example, is a device specifically designed
for packet processing at high speeds by sharing the workload between a number of in-
dependent RISC processors. However, for very demanding applications (e.g., payload
scanning for worm signatures) more power is needed than any one processor can offer.
For reasons of cost-efficiency it is infeasible to develop NPs that can cope with back-
bone link rates for such applications. An attractive alternative is to use a reconfigurable
platform such as an FPGA that exploits parallelism at a coarser granularity.

We have previously introduced the efficient monitoring framework Fairly Fast Packet
Filters (FFPF) [2], that can reach high speeds by pushing as much of the work as pos-
sible to the lowest levels of the processing stack (see Fig. 1.b). The NIC-FIX architec-
ture [11] showed how this monitoring framework could be extended all the way down



to the network card. To support such an extensible programmable environment, we in-
troduced the special purpose FPL-3 language.
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Fig. 1.Moving to special purpose embedded systems.

In this paper, we exploit packet processing parallelism at the level of individual
processing units (FPGA cores) to build a monitoring architecture: NIC-FLEX(see
Fig. 1.c). Incoming traffic is stored into a fast off-chip memory, wherefrom it is pro-
cessed by multiple FPGA cores in parallel. The processing results are first stored into a
very fast local memory and then passed, on demand, to a higher level (e.g., user space
tools). The main contribution of this paper consists of a novel language that explic-
itly facilitates parallelisation of complex packet processing tasks: FPL-3E. Also, with
NIC-FLEX we extend the FFPF architecture upwards with specific packet processing
support to create a flexible and fast filtering platform. Experiments show NIC-FLEX
to be able to handle complex tasks at gigabit line-rate.

This paper builds on the idea of extensible system-on-programable-chip that was
advocated by Lockwoodet al. in [8] for firewalling. However, we use it to provide a
generic high-speed packet processing environment by using the Compaan/Laura tool
chain [7, 15] that automatically transform a user code into synthesizable VHDL code
that targets a specific FPGA platform.

The remainder of this paper is organised as follows. In Section 2, the architecture of
the packet processing system and its supporting language are presented. Section 3 is de-
voted to the implementation details. The proposed architecture is evaluated in Section 4.
Related work is discussed throughout the text and summarised in Section 5. Finally,
conclusions are drawn and options for future research are presented in Section 6.

2 Architecture

2.1 High-level overview

At present, high speed network packet processing solutions need to be based on special
purpose hardware such as dedicated ASIC boards or network processors (see Fig. 1.b).



Although faster than commodity hardware (see Fig. 1.a), solutions based even on these
platforms are surpassed by the advances in reconfigurable hardware systems, e.g., FP-
GAs.

To counter this scalability trend we propose the solution shown in Fig. 1c, which
consists of mapping the user’s program onto hardware, processing the incoming traffic
efficiently, and then passing the processing results back to the user.

The software architecture composes by three main components (see Fig. 2). The
first component1© is a high level interface to the user and the kernel space of an Op-
erating System (e.g., Linux) and is based on the Fairly Fast Packet Filter (FFPF) [2]
framework. The second component2© is the FPL-compiler interface between the first
and the last components. The compiler takes a program written in a packet processing
language a© and generates a code objectb© for the lowest level of processing: Recon-
figurable hardware. The third component3© is a synthesiser tool that maps specific
processing algorithms onto an FPGA platform and is based on Laura tool.
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Fig. 2.Packet processing architecture.

2.2 The FFPF software framework

FFPF was designed to meet the following challenges: (1) monitor high-speed links and
scale with future link rates, (2) offer more flexibility than existing packet filters, and
(3) provide a migration path by being backward compatible with existing approaches
(notablypcap -based applications [10]). The FFPF framework supports userspace pro-
grams, kernel, the IXP1200 network processor, or a combination of the above. FFPF
now extends also on reconfigurable hardware by introducing explicitly support on FPGA
through its FPL-compiler extensions enclosed into the FFPF programming language
(FPL-3E).

2.3 The FPL-3E language and the FPL-compiler

As our architectural design relies on explicit hardware support, we needed to introduce
this functionality into our framework. With FPL-3E, we adopted a language-based ap-
proach, following our earlier experiences in this field. We designed FPL-3E specifically
with these observations in mind: First, there is a need for executing tasks (e.g., payload



scanning) that existing packet languages like BPF [10], Snort [13] or Windmill [9] can-
not perform. Second, special purpose devices such as network processors or FPGAs
can be quite complex and thus are not easy to program directly. Third, we should facil-
itate on-demand extensions, for instance through hardware assisted functions. Finally,
security issues such as user authorisation and resource constraints should be handled
effectively. The previous version of the FPL-3E language, FPL-3 [6], addressed many
of these concerns. However, it lacked features fundamental to reconfigurable hardware
processing like resource partition and parallel processing.

We will introduce the language design with an example. First, a simple program
requiring a high amount of processing power is introduced in Figure 3. Then, the same
example is discussed through multiple ‘mapping’ cases by using the FPL-3E language
extensions in Figures 4, 5.

IF (TCP) THEN
IF (HTTP) THEN

scan (web_attack)

FPGA logic:
FOR (pkt_length)

scan (web_attack) core1: PatternSearching_A

core2: PatternSearching_B
from FPL−4 to run−time

Control processor:
IF (TCP) && (HTTP) THEN ’validate’ core1
IF (TCP) && (MAIL) THEN ’validate’ core2

scan (spam)
FOR (pkt_length)

ELSE IF (UDP)

ELSE IF (MAIL)

FOR (pkt_length)

FOR (pkt_length)
scan (spam)

Fig. 3.Packet processing example.

As Figure 3 shows, the FPL-3E compiler translates the program into multiple output
objects, one for a control processor (ASIC embedded into the FPGA) and a second one
for the FPGA reconfigurable hardware (logic that contains multiple cores). The FPGA
cores consist of specific pattern searching algorithm implementations (e.g., regular ex-
pressions, Aho-corasick) that are interconnected in such way as to achieving an optimal
processing path as we show later in this section. Besides the parallelism built into the
logic, we note that the task from embedded control processor runs itself in parallel with
the FPGA logic. The control code is mostly composed of nested IF statements used for
result validation and, therefore, the processing speed of the control processor is high
enough to catch up with the high speed FPGA data processing.

Note that the requirement to perform complex packet processing at the Gbps line
rate means that each packet has to be processed within a very limited time budget – a
basic task. When a task requires a large amount ofper-packetprocessing power (e.g.,
a full packet scan for a worm), it becomes infeasible to perform this task on a single
processing unit when network speeds go up. Thus, we give the same example mapped
using various techniques for parallel processing environment. For the sake of simplicity
we limit our granularity to three levels.

A basic processing task consists in searching through the whole packet payload
data for a string (e.g., a worm signature) and it is performed by a processing unit imple-
mented in hardware. When the task overloads the processing unit, then this task can be
distributed across three hardware units in parallel, using one search key per packet, as
shown in Figure 4.a, or multiple keys per packet (see Fig. 4.b), or a combination of both



techniques. In the first configuration, the required number of cycles is reduced with the
number of hardware devices instantiated – three in our example, as the same string is
searched on different parts of the packet. The second approach allows us to search in
parallel three signatures on the same packet at a cycles cost of one. However, when the
receiving rate is higher than the processing abilities given by ‘one packet’ approach, we
can process multiple packets in parallel (depth-processing), as illustrated in Figure 5.
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Fig. 4.Packet processing techniques.
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The FPGA technology gives us enough flexibility to choose for one or a mix of
the above mentioned approaches. It also provides a long-term platform life by its ease-
to-extend with new algorithm implementations, such as IP cores specifically designed
for pattern matching, regular expressions, protocol recognition, etc. This support will
address future issues like adaptivity to new protocols (e.g., peer-to-peer). The limitation
is given only by the hardware capacity (that nowadays goes beyond our needs) and
the compiler abilities to perform such complex mapping from a simple and ‘natural’
programming language: FPL-3E.

2.4 The Compaan/Laura tool chain

The FPGA platform is a highly parallel structure suitable to accommodate algorithms
that exploit this parallelism. Although this texture is the key to take advantage of the
platform, the commonly used imperative specification programming languages like C,
Java or Matlab are hard to compile to parallel FPGA specifications. In general, spec-
ifying an application in a parallel manner is a difficult task. Therefore, we used the



CompaanCompiler [7] that fully automates the transformation of sequential specifica-
tion to an input/output equivalent parallel specification expressed in terms of a so-called
Kahn Process Network (KPN). Subsequently, theLaura tool [15] takes as its input this
KPN specification and generates synthesizable VHDL code that targets a specific FPGA
platform. The Compaan and Laura tools together realise a fully automated design flow
that maps sequential algorithms onto a reconfigurable platform. We use this design tool
chain to implement our computational intensive cores such as pattern matching algo-
rithms. Thus, in FPL-3E, we separate the control intensive tasks from data intensive
tasks. These last tasks are automatically analysed and mapped onto an FPGA platform
thereby exploiting the inherit parallelism of the data processing algorithms.

3 Implementation details

3.1 The FPL-3E language

The FFPF programming language (FPL) was devised to give the FFPF platform a more
expressive packet processing language than previously available. The FPL-3E syntax
is summarised in Figure 6. It supports all common integer types and allows expressions
to access any field in the packet header or payload in a friendly manner.

The latest version (FPL-3) conceptually uses a register-based virtual machine, but
compiles to fully optimised object code. FPL-3 supports commodity PCs and NPs (fur-
ther implementation details available in [6]). We now introduce its direct descendant,
FPL-3E, which extends FPL-3 with constructs for reconfigurable hardware processing.

EXTERN() construct. This was introduced in FPL-3 to support the ‘extensibility’
system feature. We extend it with support for reconfigurable hardware devices (FPGAs).
EXTERN(name,input,output,hw_depth) tells the compiler that the task needs
the help of the specified core ‘name’ to process the current packet according to ‘input’
parameters and place the processing results in the ‘output’. ‘hwdepth’ is an optional
parameter for advance users that want to ‘force’ the compiler to use a certain amount
of hardware units for parallel packet processing. By default, the compiler estimates this
parameter accordingly to the incoming traffic rate and the available hardware resources
(given at compile time).

3.2 The FPL-3E compiler

The FPL-3E source-to-source compiler, like its predecessors, generates straight C tar-
get code that can be further handled by any C compiler. Programs can therefore benefit
from the advanced optimisers in the IntelµEngine C compiler for IXP devices,gcc for
commodity PCs and Xilinx ISE for Xilinx’s FPGAs. As a result, the object code will
be heavily optimised even though we did not write an optimiser ourselves.

Moreover, the FPL-3E compiler uses a heuristic evaluation of the hardware in-
stances needed to reach the system goal (e.g., the line rate is 1Gbps). The evaluation is
based on the workload given by one hardware instance to perform the user’s program
and a critical point where the performances fell down because of some heavy compu-
tation like signature length, or packet size. For example, in Figure 5.b, assuming that



the user’s program performs checking of six signatures, but three of them are known as
much longer than the others, the compiler duplicates the hardware units, respectively,
in order to achieve a well balanced workload of the whole system.

operator-type operator

Arithmetic +, -, /, *, %, --, ++
Assignment =,*=, /=, %=, +=, -=

<<=, >>=, &=, ˆ=, |=
Logical / ==, !=, >, <, >=, <=,
Relational &&, ||, !
Bitwise &, |, ˆ, <<, >>

statement-type operator

if/then/else IF (expr) THEN stmt1 FI
ELSE stmt2 FI

for() FOR (initialise; test; update)
stmts; BREAK; stmts; ROF

return a value RETURN (val)
external functionINT EXTERN(name,input,

output) or
INT EXTERN(name,input,
output,hwdepth)

Data type syntax

Registern R[n]
Memory locationn M[n]
Packets access:
-bytef(n) PKT.B[f(n)]
-wordf(n) PKT.W[f(n)]
-double wordf(n) PKT.DW[f(n)]
-bit m in byten PKT.B[n].U1[m]
-nibblem in byten PKT.B[n].U4[m]
-bit m in wordn PKT.W[n].U1[m]
-bytem in wordn PKT.W[n].U8[m]
-bit m in dwordn PKT.DW[n].U1[m]
-bytem in dwordn PKT.DW[n].U8[m]
-wordm in dwordn PKT.DW[n].U16[m]
-macro PKT.macroname
-ip proto PKT.IP PROTO
-ip length PKT.IP LEN
-etc. customised macros

Fig. 6.FPL-3E language constructs

3.3 Control processor and FPGA cores

In today FPGAs there are embedded from one to four hard cores control processors
(e.g., PowerPC or ARM), that are suitable to map the control part of our algorithms. The
data intensive task are mapped directly in hardware (IP cores) using the Compaan/Laura
tool chain. The IP cores communicate with the control processor using a set of registers
to set some run-time parameters (e.g., the packet length or the searched string).

To study the feasibility of using the Compaan/Laura tool chain in the Networking
world we compiled in hardware a searching algorithm. The Matlab program for this
algorithm is shown in Figure 7. The bytes of the packet(e.g.,pkt()) are compared with
the content of a signature string (e.g.,sig()). If the signature is present in the packet,
then the value of thec variable is equal with the length of the searched string.

The program illustrated in Figure 7 has been rewritten to match the requirements
of the Compaan/Laura tool chain. Additionally, we instructed our tool to generate a
design that compare eight characters in parallel. The hardware network of processors
is depicted in Figure 8. Each bubble represents a hardware processor and each arch
a communication channel between two processors. TheReadPacketprocessor feeds
our network with packet bytes from a MAC network interface. TheSearchprocessors
implements the character wise searching, the result of a searching of a string is evaluated
by theEvalprocessor, which is also our write interface with external devices.

Table 1 gives the hardware results of the FPGA implementation of the algorithm
given in Figure 7. The experiment has been done using Symplify and ISE Xilinx 6.2
for the Virtex II-6000 platform. The hardware is capable to do an eight character string



search in a variable packet size. The required number of cycles for a variable packet
size and eight characters search string iscycles = 13 + PackSize.

for i = 7: 1: PackSize,
c = 0;
for j = 1: 1: StringLength,

if sig(j) = pkt(i),
c = c + 1;

end
end
if c = StringLength,

print "Found!"
end

end

Fig. 7.Simple Search Algorithm
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In our example, the length of the search string is fixed to eight characters. However,
the string content may be changed at run-time.

Packet LengthString LengthClocks/WorkloadSlicesFrequency (MHz)
64 8 77 2035 101

Table 1.Experimental results

4 Evaluation

Given the pattern matching algorithm result (see Table 1) for one search-key per packet,
we extrapolate to other case studies as already illustrated in Figure 5. In Figure 9 is
shown how the performances of one key per packet approach (1key/1hw) scale up by
increasing the use of hardware units (1key/3hw) in parallel.

Fig. 9.FPGA vs. NP processing results.



The processing result of a full packet payload pattern search filter performed by a
1Gbps generation network processor (Intel IXP1200) is also shown in Figure 9. There-
fore, making a comparison between an FPGA implementation and a network processor
implementation, it can be seen that a complex filter (such as a pattern searching algo-
rithm) performed by a NP is surpassed by even a single IP core implementation.

Note that the relative small amount of hardware resources used for this implemen-
tation (ca. 6% for a Virtex II-6000) allows us to map more than one search engine into
a FPGA platform.

5 Related work

The usage of accelerated cores has been done in the Molen project [14] by annotat-
ing a PowerPC processor with a set of multimedia instructions that are accelerated in
hardware. Our approach focuses on the networking applications algorithms. Thus, our
hardware accelerated cores perform coarse grain computations (e.g., pattern matching).
Additionally, the number of processing elements for a particular task can be set-up at
compile time based either on user demands or on the built-in compiler heuristic estima-
tor about the workload requirements.

Using reconfigurable hardware for increased packet processing efficiency was pre-
viously explored in [4] and [1]. Our architecture differs in that it provides explicit lan-
guage support for this purpose. As shown in [3], it is efficient to use a source-to-source
compiler from a generic language (Snort Intrusion Detection System) to a back-end
language supported by the targeted hardware compiler (e.g., IntelµEngineC, PowerPC
C, VHDL). We propose a more flexible and easy to use language as front-end for users.
Moreover, our FPL-3E language is designed and implemented for heterogeneous tar-
gets in a multi-level system.

The SCAMPI architecture also pushes processing to the NIC [12]. It assumes that
hardware can write packets immediately into host memory (e.g., by using DAG cards [5])
and implements access to packet buffers through a userspace daemon. SCAMPI does
not support user-provided external functions, powerful languages such as FPL-3E.

6 Conclusions and future work

This paper presented the NIC-FLEX packet processing environment and its FPL-3E

programming language, which enable users to process network traffic at high speeds
by mapping of their programs onto reconfigurable hardware (FPGA). A program is
mapped by loading IP cores generated using Compaan/Laura approach to implement
the data intensive tasks in hardware from the real of networking. Currently, this task
is performed by an engineer and thus, the user cannot generate its own tasks in hard-
ware. However, we supply the FPL framework with a wide range of hardware cores to
overcome the need for different cores. All these cores are annotated with performace
numbers such that the FPL-3E environment computes the right work balance, based on
a heuristic evaluation. This heuristics may be ignored by the user and replaced with its
own evaluation. The experimental results show that NIC-FLEX can outperform tradi-
tional packet filters by processing at Gbps linerate.



In the future, we plan to extend NIC-FLEX with a management environment that
can take care of object code loading and program instantiation.
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