
FFPF: Fairly Fast Packet Filters

Herbert Bos†, Willem de Bruijn†, Mihai Cristea∗, Trung Nguyen∗, Georgios Portokalidis∗

†Vrije Universiteit Amsterdam, The Netherlands
{herbertb, wdb}@few.vu.nl
∗Universiteit Leiden, The Netherlands

{cristea,tnguyen,gportoka}@liacs.nl

Abstract
FFPF is a network monitoring framework designed for
three things: speed (handling high link rates), scalabil-
ity (ability to handle multiple applications) and flexibility.
Multiple applications that need to access overlapping sets
of packets may share their packet buffers, thus avoiding
a packet copy to each individual application that needs it.
In addition, context switching and copies across the kernel
boundary are minimised by handling most processing in the
kernel or on the network card and by memory mapping all
buffers to userspace, respectively. For these reasons, FFPF
has superior performance compared to existing approaches
such as BSD packet filters, and especially shines when mul-
tiple monitoring applications execute simultaneously. Flex-
ibility is achieved by allowing expressions written in differ-
ent languages to be connected to form complex processing
graphs (not unlike UNIX processes can be connected to cre-
ate complex behaviour using pipes). Moreover, FFPF ex-
plicitly supports extensibility by allowing new functionality
to be loaded at runtime. By also implementing the popu-
lar pcap packet capture library on FFPF, we have ensured
backward compatibility with many existing tools, while at
the same time giving the applications a signficant perfor-
mance boost.

1 Introduction

Most network monitoring tools in use today were de-
signed for low-speed networks under the assumption that
computing speed compares favourably to network speed.
In such environments, the costs of copying packets to
user space prior to processing them are acceptable. In
today’s networks, this assumption is no longer true. The
number of cycles available to process a packet before the
next one arrives (the cycle budget) is minimal. The sit-
uation is even worse if multiple monitoring applications
are active simultaneously, which is increasingly common
as monitors are used for traffic engineering, SLA moni-
toring, intrusion detection, steering schedulers in GRID

computing, etc. Moreover, the processing requirements
are increasing. Consider the following monitoring appli-
cations:

1. An intrusion detection system (IDS) checks the pay-
load of every packet for worm signatures [31].

2. An application based on the ‘Coralreef’ suite keeps
statistics for the ten most active flows [21].

3. A tool is interested in monitoring flows for which
the port numbers are not known a priori. Such flows
are found, for example, in peer-to-peer and H.323
multimedia flows where the control channels use
well-known port numbers, while the data transfer
takes place on dynamically assigned ports [32].

4. Multiple monitoring applications (e.g. snort,
tcpdump, etc.) access identical or overlapping sets
of packets.

In high-speed networks, none of these applications are
catered to in the kernel in a satisfactory manner by ex-
isting solutions such as BPF, the BSD Packet Filter [25],
and its Linux cousin, the Linux Socket Filter (LSF). In
our view, they require a rethinking of the way packets
are handled in the operating system.

In this paper, we discuss the implementation of the
fairly fast packet filter (FFPF). FFPF introduces a novel
packet processing architecture that provides a solution
for filtering and classification at high speeds. FFPF has
three ambitious goals: speed (high rates), scalability (in
number of applications) and flexibility. Speed and scal-
ability are achieved by performing complex processing
either in the kernel or on a network processor, and by
minimising copying and context switches. Flexibility is
considered equally important, and for this reason, FFPF
is explicitly extensible with native code and allows com-
plex behaviour to be constructed from simple compo-
nents in various ways.

On the one hand, FFPF is designed as an alternative to
kernel packet filters such as CSPF [26], BPF [25], mm-
dump [32], and xPF [19]. All of these approaches rely on
copying many packets to userspace for complex process-
ing (such as scanning the packets for intrusion attempts).
In contrast, FFPF permits processing at lower levels and
may require as few as zero copies (depending on the con-
figuration) while minimising context switches. On the
other hand, the FFPF framework allows one to add sup-
port for any of the above approaches.

FFPF is not meant to compete with monitoring suites
like Coralreef that operate at a higher level and provide
libraries, applications and drivers to analyse data [21].
Also, unlike MPF [34], Pathfinder [3], DPF [17] and
BPF+ [5], the goal of this research is not to optimise fil-
ter expressions. Indeed, the FFPF framework itself is
language neutral and currently supports five different fil-
ter languages. One of these languages is BPF, and an
implementation of libpcap1exists, which ensures not
only that FFPF is backward compatible with many popu-
lar tools (e.g., tcpdump, ntop, snort, etc. [31]), but
also that these tools get a significant performance boost
(see Section 5). Better still, FFPF allows users to mix and
match packet functions written in different languages.

To take full advantage of all features offered by FFPF,
we implemented two languages from scratch: FPL-1
(FFPF Packet Language 1) and its successor, FPL-2. The
main difference between the two is that FPL-1 runs in an
interpreter, while FPL-2 code is compiled to fully opti-
mised native code.

The aim of FFPF is to provide a complete, fast, and
safe packet handling architecture that caters to all mon-
itoring applications in existence today and provides ex-
tensibility for future applications. Since its first release
in May 2003 we have constantly improved the code and
gained a fair amount of experience in monitoring. We
now feel that the architecture has stabilised and the ideas
are applicable to systems other than FFPF as well. FFPF
is available from ffpf.sourceforge.net. Some
contributions of this paper are summarised below.

1. We generalise the concept of a ‘flow’ to a stream of
packets that matches arbitrary user criteria.

2. Context switching and packet copying are reduced
(up to ‘zero copy’).

3. We introduce the concept of a ‘flow group’, a group
of applications that share a common packet buffer.

4. Complex processing is possible in the kernel or NIC
(reducing the number of packets that must be sent
up to userspace), while Unix-style filter ‘pipes’ al-
low for building complex flow graphs.

1http://www.tcpdump.org/

5. Persistent storage for flow-specific state (e.g., coun-
ters) is added, allowing filters to generate statistics,
handle flows with dynamic ports, etc.

To our knowledge, few solutions exist that support any
of these features and none that provide all in a single, in-
tuitive, architecture. In this paper, we present the FFPF
architecture and its implementation in the Linux kernel.
The remainder of this paper is organised as follows. In
Section 2, a high-level overview of the FFPF architecture
is presented. In Section 3, implementation details are
discussed. A separate section, Section 4 is devoted to the
implementation of FFPF on the IXP1200. FFPF is eval-
uated in Section 5. Related work is discussed throughout
the text and summarised in Section 6. Conclusions and
future work are presented in Section 7.

2 FFPF high-level overview

The FFPF framework can be used in userspace, the ker-
nel, the IXP1200 network processor, or a combination
of the above. As network processors are not yet widely
used, and (pure) userspace FFPF does not offer many
speed advantages, the kernel version is currently the most
popular. For this reason, we use FFPF-kernel to explain
the architecture, and describe the userspace and network
processor versions later. The main components are illus-
trated in Figure (1.a).

A key concept in FFPF is the notion of a flow which is
different from what is traditionally thought of as a flow
(e.g., a ‘TCP flow’). It may be thought of as a gen-
eralized socket: a flow is ‘created’ and ‘closed’ by an
application and delivers a stream of packets, where the
packets match arbitrary user criteria (e.g., “all UDP and
TCP packets sent to port 554”, or “all UDP packets con-
taining the CodeRed worm plus all TCP SYN packets”).
The flow may also provide other application-specific in-
formation (e.g., traffic statistics).

Application
A

1 2 3MBuf(f)

flow grabber A

IBuf(f)

PBuf

Application
address space

1 2 3MBuf(f)

flow grabber

sources

IBuf(f) PBuf

Application
B

IBuf(f)

MBuf(f)

flow grabber B

(a) single application (b) two applications in a flow group

A B

A B

sources

shared
memory

u
se

rs
p

ac
e

ke
rn

el

Figure 1: The FFPF architecture

A flow is captured by a flow grabber. For now, con-

sider a flow grabber to be a filter that passes just the
information (packets, statistics) in which the user is in-
terested. Packets arrive in the system via one or more
packet sources. Examples of packet sources include: (a)
a network driver that interacts with a dumb NIC, (b)
a smart NIC that interacts with FFPF directly, or (c)
a higher-layer abstraction in the operating system that
hides device-specific issues. A flow grabber receives the
packets and if they correspond to its flow, stores them in
a circular packet buffer known as PBuf . In addition, it
places a pointer to this packet in a second circular buffer,
known as the index buffer, or IBuf . Applications use
the pointers in IBuf to find packets in PBuf .

The reason for using two buffers for capturing a flow
is that while IBuf is specific to a flow, PBuf is shared.
If the application opens two flows, there will be just one
PBuf and two IBufs. If the flows are ‘overlapping’
(i.e., some packets in flowa are also in flowb), only one
copy of each packet will be in PBuf . However, if a
packet is in both flows, a pointer to it is placed in both
IBufs. In other words, we do not copy packets to indi-
vidual flows. Moreover, the buffers are memory mapped,
so we do not copy between kernel and userspace ei-
ther. We show later how PBuf can also be shared by
multiple applications (as sketched in Figure (1.b)). Us-
ing memory mapping to avoid copying is a known tech-
nique, also used in monitoring solutions like DAG and
SCAMPI [10, 30]. Edwards et al. also give userspace ap-
plications direct control over packet buffers, but provide
an explicit API to access the buffers rather than memory
mapping [15].

Thus far, we have assumed that a flow grabber is
equivalent to a filter. In reality, a flow grabber can be
a complex graph of interconnected filters, where a fil-
ter is defined as an element that takes a stream of pack-
ets as input and returns a (possibly empty) subset of this
stream as output. In addition, a filter may provide ar-
bitrary information about the traffic, e.g., statistics, in-
trusion alerts, etc. For this purpose, every filter has an
associated MBuf (also memory mapped), which is a
buffer that is used to produce results for applications, or
to keep persistent state. It can also be used by the appli-
cation to pass configuration parameters to the filter. For
instance, in case of a ‘blacklist filter’ the application may
store the addresses of the blacklist in MBuf . Note that
the ability to perform more complex processing than just
filtering, helps to reduce context switches, e.g., because
applications that are interested in periodic statistics only
and not in the packets themselves need not be scheduled
for packet processing.

In later sections, we show that FFPF is language neu-
tral, so that, for instance, BSD packet filters can be com-
bined with filters written in other languages. In fact, the
filters in a flow grabber are simple instantiations of fil-

ter classes, one of which may be the class of BPF fil-
ters. In addition to existing languages like BPF, we sup-
port two new languages (see Section 3.3) that are ex-
plicitly designed to exploit all features offered by FFPF.
Among other things, they provide extensibility of the
FFPF framework by their ability to call ‘external func-
tions’ (provided these functions were previously regis-
tered with FFPF). External functions commonly contain
highly optimised native or even hardware implementa-
tions of operations that are too expensive to execute in a
‘safe’ language (e.g., pattern matching, generating MD5
message digests).

We have covered most aspects of FFPF that are rel-
evant if a single monitoring application is active. It is
now time to consider what happens if multiple applica-
tions are present. For this purpose, we introduce a new
concept, called the flow group. A flow group is a set of
applications with the same access rights to packets, i.e.,
if one application is allowed to read a packet, all others
in the same group may also access it. Flow groups are
again used to minimise packet copying. Applications in
the same group share a common PBuf . PBuf con-
tains all packets for which one or more applications in
the group have expressed interest. This is illustrated in
Figure (1.b). If more than one group express interest in
the packet, it is copied once per group, unlike existing
approaches (such as BPF/LSF) which copy the packet to
each application separately. This makes FFPF cheaper
than other solutions when supporting multiple applica-
tions. In the current implementation, the flow group is
determined by group id. In the future, we plan to provide
applications with more explicit control over flow groups.

We see that FFPF demultiplexes packets to their re-
spective flows early, i.e., well before they are processed
by the kernel protocol stack. This is a tried technique
that is also used in projects like LRP [14]. Unlike LRP,
however, we do not place the packets themselves on
application-specific queues, but only the corresponding
pointers. Thus, it is possible to avoid copying both for
demultiplexing purposes and for crossing the protection
domain boundaries.

2.1 Receiving packets in a flow

An application may be interested in multiple flows.
Flows are captured from a raw input stream in four
steps. Firstly, a flow handle is created with the
flow_create() operation. Creating a flow handle
sets up a user-space data structure which is used as
an identifier in all future operations on the flow, but
does not result in any packets being captured. Sec-
ondly, the flow handle structure is populated using the
flow_populate() operation by specifying for in-
stance the graph of connected filters, callback functions
and other parameters to be associated with the flow. The

result is a flow definition in user space consisting of a
graph of filters that will capture the flow, associated call-
backs, etc. Thirdly, the flow definition is used as blue
print to instantiate a ‘flow grabber’ which is done by
calling the flow_instantiate() operation. Only
at instantiation time are the filters that capture the flow
instantiated and connected, provided the flow defini-
tion passes the authorisation control check (Section 3.4).
Fourthly, an instantiated flow grabber by itself still does
not capture packets; the flow grabber first needs to be ac-
tivated. Conversely, an activated flow can be paused (and
subsequently re-activated). Flow activation and paus-
ing is performed using the flow_activate() and
flow_pause() operations. Finally, a flow can be
closed (flow_close()). When a flow is closed (or
the corresponding application crashes), all flow state is
destroyed. In the remainder of this paper, we will use the
term ‘flow’ to refer both to the flow grabber (the code in
the kernel that captures the flow), and to the packets cap-
tured by the flow grabber (the real ‘flow’), except where
the distinction is important.

Instantiation is a separate step, because the flow spec-
ification is sent in its entirety to authorisation control, so
that we can enforce that a packet function f (e.g., pay-
load scanning) be allowed if and only if another function
g (e.g., a filter passing only traffic from a specific sub-
net) is applied before (or after) f . Flow activation is also
a separate step, as it gives administrators more accurate
control over the start time (flow activation is more light-
weight than flow instantiation).

2.2 Filter expressions

FFPF is language neutral, which means that different lan-
guages may be mixed. As mentioned earlier, we cur-
rently support five languages: BPF, FPL-1, FPL-2, C,
and OKE-Cyclone. Support for C is limited to root users.
The nature of the other languages will be discussed in
more detail in Section 3. Presently, we only sketch how
multiple languages are supported by the framework.

Figure (2.a) shows an example with two simplified
flow definitions, for flows A and B, respectively. The
grabber for flow A scans web traffic for the occurrence of
a worm signature and saves the IP source and destination
addresses of all infected packets. In case the signature
was not encountered before, the packet is also handed
to the application. Flow grabber B counts the number
of fragments in web traffic. The first fragment of each
fragmented packet is passed to the application.

There are a few things that we should notice. First, one
of these applications is fairly complex, performing a full
payload scan, while the other shows how state is kept re-
gardless of whether a packet itself is sent to userspace. It
is difficult to receive these flows efficiently using existing

packet filtering frameworks, because they either don’t al-
low complex processing in the kernel, or do not keep per-
sistent state, or both. Second, both flows may end up
grabbing the same packets. Third, the processing in both
flows is partly overlapping: they both work on HTTP
packets, which means that they first check whether the
packets are TCP/IP with destination port 80 (first block
in Figure 2). Fourth, as fragmentation is rare and few
packets contain the CodeRed worm, in the common case
there is no need for the monitoring application to get in-
volved at all.

Figure (2.a) shows how these two flows can be accom-
modated. A common BPF filter selecting HTTP/TCP/IP
packets is shared by both flows. They are connected to
the flow-specific parts of the data paths. As shown in the
figure, the data paths are made up of small components
written in different languages. The constituent filters are
connected in a fashion similar to UNIX pipes. More-
over, a pipe may be ‘split’ (i.e., sent to multiple other
pipes, as shown in the figure) and multiple pipes may
even be ‘joined’. Again, in UNIX fashion, the frame-
work allows applications to create complex filter struc-
tures using simple components. A difference with UNIX
pipes, however, is the method of connection: FFPF au-
tomatically recognises overlapping requests and merges
the respective filters, thereby also taking care of all com-
ponent interconnects.

Each filter has its own IBuf , and MBuf , and, once
connected to a packet source, may be used as a ‘flow
grabber’ in its own right (just like a stage in a UNIX pipe
is itself an application). Filters may read the MBuf of
other filters in their flow group (although we have not
yet implemented synchronisation primitives to prevent
races). In case the same MBuf needs to be written by
multiple filters, the solution is to use function-like filter
calls supported by FPL-1 and FPL-2, rather than pipe-
like filter concatenation discussed so far. For filter call
semantics, a filter is called explicitly as an external func-
tion by a statement in an FPL expression, rather than im-
plicitly in a concatenated pipe. An explicit call will ex-
ecute the target filter expression with the calling filter’s
IBuf and MBuf . An example is shown in Figure (2.b),
where a first filter call creates a hash table with counters
for each TCP flow, while a second filter call scans the
hash table for the top-10 most active flows. Both access
the same memory area.

2.3 Construction of filter graphs by users

FFPF comes with a few constructs to build complex
graphs out of individual filters. While the constructs can
be used by means of a library, they are also supported by
a simple command-line tool called ffpf-flow. For ex-
ample, pronouncing the construct ‘->’ as ’connects to’

[BPF]
is IP/TCP/HTTP?

[FPL-2]
contains CodeRed?

[FPL-2]
is Fragment?

[FPL-1]
save IP<src,dest>

[FPL-2]
incr FragCount

[FPL-1]
if (first) return pkt

[FPL-2]
if (first) return pkt

[FPL-2]
stmt1 -> stmt2 -> stm3

[FPL-1]
Create hashtable

[C]
find ’top-10’ in table

(a) (b)

B B B

A A A

A B+

Figure 2: (a) combining different languages in two flows (A and B), (b) calling external functions from a single flow

and ’|’ as ’in parallel with’, the command below cap-
tures two different flows:

./ffpf-flow \
"(device,eth0) | (device,eth1) -> (sampler,2,4) -> \

(FPL-2,"...") | (BPF,"...") -> (bytecount,,8)"
"(device, eth0) -> (sampler,2,4) -> (BPF,"...") \

-> (packetcount,,8)"

The top flow specification indicates that the grabber
should capture packets from devices eth0 and eth1,
and pass them to a sampler that captures one in two pack-
ets and requires four bytes of MBuf . Next, sampled
packets are sent both to an FPL-2 filter and to a BPF
filter. These filters execute user-specified filter expres-
sions (indicated by ‘. . .’), and in this example require
no MBuf . All packets that pass these filters are sent
to a bytecount ‘filter’ which stores the byte count statis-
tic in in MBuf in an eight byte counter. The counter
can be read directly from userspace, while the packets
themselves are not passed to the monitoring application.
The second flow has a prefic of two ‘filters’ in common
with the first expression (devices are treated as filters in
FFPF), but now the packets are forwarded to a different
BPF filter, and from there to a packet counter.

As a by-product, FFPF generates a graphical represen-
tation of the entire filter-graph. A graph for the two flows
above is shown in Figure 3. For illustration purposes, the
graph shows few details. We just show (a) the configu-
ration of the filter graph as instantiated by the users (the
ovals at the top of the figure), (b) the filter instantiations
to which each of the component filters corresponds (cir-
cles), and (c) the filter classes upon which each of the
instantiations is based (squares). Note that there is only
one instantiation of the sampler, even though it is used
in two different flows. On the other hand, there are two
instantiations of the BPF filter class. The reason is that
the filter expressions in the two flows are different.

The ability to load and interconnect high-speed packet
handlers in the kernel was also explored by Wallach et
al., with an eye on integrating layer processing and re-
ducing copying [33]. Similarly, Click allows program-
mers to load packet processing functions consisting of
a configuration of simple elements that push (pull) data
to (from) each other [28]. The same model was used in

Figure 3: Auto-generated diagram of filter graph

the Corral, but with support for third parties that may
add and remove elements at runtime [9]. The filter
concatenation and support for a hierarchy that includes
IXP1200s resembles paths in the Scout project [4]. Scout
was not designed for monitoring per se and, hence, does
not directly provide some of FFPF’s features such as
new languages or flow groups. Mono-lingual kernel-
programming projects that also do not support these fea-
tures include FLAME [1] and our own Open Kernel En-
vironment [7]) which provide high speed processing by
loading native code (compiled Cyclone) in the kernel.

2.4 Processing

A key aspect to performance is that most processing
takes place at the lowest possible level, e.g. in the kernel
or network processor. For example, in the FFPF imple-
mentation on IXP1200 network processors, packet pro-
cessing and buffer management are handled entirely by
the IXP.

As shown in Figure 4, FFPF spans all three levels of
the processing hierarchy: userspace, kernel, and network
interface. Filters can be loaded at any of these levels.

The figure shows that filters from lower levels (e.g. the
network card) may be connected to filters at higher lev-
els. For instance, first-pass filtering may take place at the
IXP1200, followed by more expensive processing at the
host. A similar approach is found for instance in paths
in the Scout OS [4]. Where in the processing hierarchy
filters should be loaded depends on the availability of fil-
ter classes in each space and the trade-off in efficiency
vs. stability at each level. Users need not concern them-
selves with this task as the deployment decision is made
automatically by the FFPF toolkit.

The shaded areas in the figure indicate APIs that we
developed on top of the native FFPF interface. The
libpcap implementation guarantees backward com-
patibility with a host of applications. As shown in Sec-
tion 5, running legacy libpcap applications on FFPF
rather than on the existing Linux framework also leads
to a significant performance boost. The MAPI is a very
powerful monitoring API developed within the SCAMPI
project [30]. Since FFPF’s functionality exceeds that of
both pcap and MAPI, the implementation of these inter-
faces involved just a few hours work. The FFPF toolkit
supports automatic allocation of filters to the most opti-
mal place in the processing hierarchy. Moreover, when
a new flow grabber is instantiated, the toolkit automati-
cally tries to merge it with already existing ‘filter graphs’,
so that every common prefix is executed only once.

FFPF-Kernel

Applications

userspace

kernel

ixp1200

FFPF-Userspace

FFPF-IXP

PCI board API

userspace API

libpcap

MAPItoolkit

FFPF-IXP
filter

sample scan1

scan2

Figure 4: FFPF software structure (with some sample flows)

3 Implementation

3.1 The Buffers

Both PBuf and IBuf are circular buffers of N fixed
size slots, with N a configurable constant. PBuf slots
are large enough to hold maximum-size packets, while
the slots in the index buffers hold two 32 bit values: an
index in PBuf and the packet’s ‘classification result’

(the value returned by the filter). A packet is considered
‘interesting’ if the filter returns a non-zero result.

Applications read packets of a flow by indexing
PBuf of filter f with the values in IBuf . By default,
network packets are stored in PBuf from the link layer
up. As applications access the index buffers, classifica-
tion results are immediately available, normally within
the same cache line. Although the indices point only to
the packets in which they are interested, applications are
able to see packets received by all others in the same flow
group (but not those received by other groups).

3.1.1 Buffer management

Circular buffers in FFPF have two indices to indicate the
current read and write positions. These are known as R

and W , respectively. Whenever W catches up with R,
the buffer is full. The way in which the system handles
this case is defined by the buffer management system
(BMS). The modular design of FFPF allows different
BMSs to be used. The administrator chooses the BMS
at startup time. The optimal choice depends on the mix
of applications that will be executed and their relative im-
portance. Currently, two BMSs have been defined. The
first is known as ‘slow reader preference’ and is com-
monly used in existing systems. The second is known as
‘fast reader preference’ and is a novel way of ensuring
that fast readers are not slowed down by tardy applica-
tions.

Slow reader preference. In SRP, as long as the buffer
is full, all new packets are dropped. Both R and W are
mapped read-only to an application’s address space and
updated in kernel or network card. The packet grabber
in the kernel/card writes data in a group’s PBuf and up-
dates W until the buffer is full, i.e., until W catches up
with the slowest reader in the group. Thus, the slow-
est reader in a group may block all other readers in that
group. The R value of the slowest reader will be de-
noted by R∗. An application explicitly updates its own
R by way of system call after it has processed a num-
ber of packets and, if needed, the kernel then also up-
dates R∗. One of the keys to speed is that R need not be
incremented by one for every packet that is processed.
Instead, an application may process a thousand packets
and then increment R by a thousand in one go. Doing so
saves many kernel boundary crossings. A similar mech-
anism is used for DAG cards [10].

As an example, consider the implementation on
IXP1200 network processors, where packet processing
and buffer management is handled entirely by the IXP.
The IXP receives a packet, places it in PBuf , updates
W , receives the next packet, and so on. Meanwhile, the
filters are executed in independent processing engines on

the network processor and determine whether a reference
to the packet should be placed in the filters’ index buffers.
Assuming that the administrator chose to use ‘zero-copy’
packet handling (more about the various options in Sec-
tion 4.3), applications access packets immediately, as the
buffers are memory mapped through to userspace. While
applications process the packets, the kernel is not used
at all. Only after an application has processed n pack-
ets of a flow and decides to advance its R explicitly, the
kernel is activated. On the reception of a request to ad-
vance an application’s R, the kernel also calculates the
new value of R∗ and passes it to the packet receiving
code on the IXP. In the extreme case, where a single ap-
plication is active, the IXP code and application work
fully independently and the number of interrupts and
context switches is minimal. The way FFPF’s SRP cap-
tures packets in a circular buffer and memory maps them
to user space is similar to Luca Deri’s PF_RING [13],
although PF_RING copies packets to each application
individually.

Fast reader preference. FRP is a departure from the
‘traditional’ way of dealing with buffer overflow. In FRP
mode, FFPF keeps writing packets, regardless of the sta-
tus of the readers, and it is the reader’s responsibility to
keep up. An application that fails to keep up may have
older but still unread data overwritten by new packets. In
this case, R is of no concern to FFPF and used only by
the application. The idea is that applications check af-
ter they processed a set of packets, whether or not these
packets were overwritten in the meantime (and hence
whether the application should consider them lost after
all). For this purpose, FFPF keeps a memory mapped
wrap counter that is incremented each time W ‘wraps’
to zero. Using the counter, applications can check them-
selves whether the current value of W is greater than
their value of R and thus whether the packets they just
accessed were valid.

Suppose an application is about to access a set of 100
packets when the values of R, W and wrap counter are
50, 400, and 10, respectively. When the application has
finished processing, it again checks these values and now
finds that W is 450, while the wrap counter is 11. In
other words, the writing process has wrapped and over-
written all packets that were just processed. The appli-
cation will count these packets as dropped. Note that as
a result the drop rate in a group may vary from applica-
tion to application. It should be mentioned that FRP is
not necessarily more efficient in terms of the total pro-
cessing that is required for buffer management. Rather,
it distributes this computation to the applications them-
selves, removing the dependencies between readers that
exist in a centralised solution.

3.1.2 Filter-specific memory array

The third buffer in Figure 1 is the filter’s memory array
MBuf . It is used by both the filters in the kernel and
the userspace application. User applications have read
and write access to the memory arrays of their filters,
so the arrays can be used to exchange data between the
application and a filter expression. The MBuf area is
persistent, i.e., its contents remain valid across multiple
invocations of a filter. It is argued in [19] that the absence
of persistent state is one of the major drawbacks of BPF.
While [19] describes how BPF can be extended to also
allow for persistent memory (and explicit switching be-
tween persistent and non-persistent memory is needed),
this paper describes an approach in which it is part of the
design from the outset.

A simple use case is a filter f which treats the
entire memory array as a hash table that is used to
count the number of packets received on all TCP/IP
flows. The corresponding filter first checks whether
a packet is TCP/IP. If so, it calculates a hash of the
<ipsrc,ipdest,srcport,dstport> tuple and
increments the counter stored at that location in the mem-
ory array. The result is that without intervention by the
user application, the memory array contains the packet
counts of all TCP/IP flows seen by the system (assuming
the hash table is large enough). The implementation of
this example is trivial if the language is capable of using
persistent state. An example of such code in FPL-2 is
shown in Figure 6 and will be discussed in Section 3.3.1.

3.2 The flows

Flows are captured by stringing together filters as ex-
plained in Section 2.2. The packets received in a
flow can be read by the application in different ways.
The simplest way is to read continuously from the
buffer whenever a packet is available, e.g., using the
filter_getnext_pkt()operation. Doing so, how-
ever, keeps the application polling constantly. From a
CPU usage and context switching point of view, pack-
ets may be read more efficiently by blocking, e.g., until a
certain number of packets has been received. FFPF offers
two flavours of blocking: (a) wait_for_n_pkts(n),
a blocking call that only returns after n packets are
received, and (b) installing a filter_callback()
which is non-blocking itself and results in a callback of
a registered callback function whenever n packets are re-
ceived. At callback registration time, users specify how
long the callback should remain active. Of course, even
with filter_getnext_pkt() an application may
block explicitly, e.g. by calling sleep(10) to process
every 10 seconds all packets that were received in that
period.

3.3 FFPF Packet Languages

While FFPF is language neutral, some languages are bet-
ter suited to exploit the strengths of FFPF than others.
BPF, for instance, can not by itself take advantage of
FFPF’s persistent state, extensibility, etc. For this reason,
we developed two new languages for filter expressions,
known as FPL-1 and FPL-2 (FFPF packet languages 1
and 2). They were designed to exploit all of FFPF’s fea-
tures. The main distinctions are that FPL-1 is a fairly
slow interpreted stack language, while FPL-2 is fully op-
timised native code (based on registers), and that FPL-1
code can be self-modifying, while FPL-2 code is fixed.
Also, the syntax in FPL-2 is much improved.

Given that FPL-1 has been around for a year now,
why did we develop FPL-2? The reason is that although
FPL-1 bytecode is fairly efficient, running it in an in-
terpreter hurts performance. Moreover, as observed by
McCanne and Van Jacobson: for modern processor ar-
chitectures, stack-based languages are less efficient than
register-based approaches [25]. For this reason, we de-
veloped a language that (1) compiles to fully optimised
object code, and (2) is based on registers and memory,
and (3) has a more readable syntax.

Apart from self-modification, there is little functional
difference between FPL-1 and FPL-2. For this reason,
we discuss ‘FPL’ as a general concept, using FPL-2 lan-
guage constructs for illustration. A detailed explanation
of FPL-1 and FPL-2 can be found in [8] and [12].

3.3.1 FPL

The FPL language is summarised in Figure 5. It supports
all common integer types (signed and unsigned bits, nib-
bles, octets, words and double words) and allows expres-
sions to get hold of any field in the packet header or pay-
load in a friendly manner. Moreover, offsets in packets
can be variable, i.e., determined by an expression. For
convenience, an extensible set of macros allows use of
shorthand for packet fields, e.g., instead of asking for
bytes nine and ten to obtain the IP header’s protocol field,
a user may abbreviate to ‘IP_PROTO’. We briefly ex-
plain constructs that are not intuitively clear.

FOR. The FOR loop construct is limited to loops with
a pre-determined number of iterations. The break
instruction, allows one to exit the loop ‘early’. In
this case (and also when the loop finishes), execu-
tion continues at the instruction following the ROF
construct.

Registers and memory. FPL is able to access the fil-
ter’s MBuf by means of the assignment operator.
For instance, one may assign the content of a mem-
ory location to a register, perform a set of calcula-
tions, and then assign the value of the register back

operator-type operator
Arithmetic +, -, /, *, %, --, ++
Assignment =,*=, /=, %=, +=, -=

<<=, >>=, &=, ˆ=, |=
Logical/Relational ==, !=, >, <, >=, <=,

&&, ||, !
Bitwise &, |, ˆ, <<, >>

statement-type operator

if/then/else IF (expr) THEN stmt1 ELSE stmt2 FI
for() FOR (initialise; test; update)

stmts; BREAK; stmts; ROF
external function EXTERN(filter, input, output)
hash() INT HASH(start byte,len,tablesize)
return a value RETURN (val)

Data type syntax

Register n† R[n]
Memory location n MEM[n]
Packets access:
- byte f(n) PKT.B[f(n)]
- word f(n) PKT.W[f(n)]
- bit m in byte n PKT.B[n].U1[m]
- byte m in word n PKT.W[n].U8[m]
etc. (many options, including macros)

Figure 5: FPL-2 language constructs (†m and n arbitrary vari-
ables)

to memory. All accesses to MBuf are checked for
bounds violations. An example of MBuf usage in
FPL-2 is shown in Figure 6. The code implements
the filter f mentioned in Section 3.1.2 that keeps
track of how many packets were received on each
TCP connection (assuming for simplicity that the
hash is unique for each live TCP flow).

// count number of packets in every flow,
// by keeping counters in hash table
// (assume hash is unique for each flow)
IF (PKT.IP_PROTO == PROTO_TCP)
THEN

// register = hash over TCP flow fields
R[0] = Hash(14,12,256);
// increment the pkt counter at this position
MEM[R[0]]++;

FI

Figure 6: Example of FPL-2 code: count TCP flow activity

External functions. An important feature of FPL is ex-
tensibility and the concept of an ‘external function’
is key to extensibility, flexibility and speed. Ex-
ternal functions are an explicit mechanism to in-
troduce extended functionality to FFPF and add to
flexibility by implementing the ‘filter call’ seman-
tics shown in Figure (2.b). While they look like fil-
ters, the functions may implement anything that is
considered useful (e.g., checksum calculation, pat-

tern matching). They can be written in any of the
supported languages, but it is anticipated that they
will often be used to call optimised native code per-
forming computationally expensive operations.

In FPL, an external function is called using the
EXTERN construct, where the parameters indicate
the filter to call, the offset in MBuf where the fil-
ter can find its input data (if any), and the offset at
which it should write its output, respectively. For
instance, EXTERN(foo,x,y) will call external
function foo, which will read its input from mem-
ory at offset x, and produce output, if any, at off-
set y. Note that FFPF does not prevent users from
supplying bogus arguments. Protection comes from
authorisation control discussed in Section 3.4 and
from the compiler. The compiler checks the use
of external functions in a filter. An external func-
tion’s definition prescribes the size of the parame-
ters, so whenever a user’s filter tries to let the exter-
nal function read its input from an offset that would
make it stray beyond the bounds of the memory ar-
ray, an error is generated. This is one of the advan-
tages of having a ’trusted’ compiler (see also Sec-
tion 3.3.3. In addition, authorisation control can be
used to grant users access only to a set of registered
functions.

A small library of external filter functions has been
implemented (including implementation of popular
pattern matching algorithms, such as Aho-Corasick
and Boyer-Moore). The implementation will be
evaluated in Section 5. External functions in FPL
can also be used to ‘script together’ filters from
different approaches (e.g., BPF+ [5], DPF [17],
PathFinder [3], etc.), much like a shell script in
UNIX.

3.3.2 Monitoring application with dynamic ports

Many existing packet filters are not well suited for han-
dling applications with dynamic ports. Such applica-
tions use control channels with well-known port num-
bers, while data transfer takes place over ports that are
negotiated dynamically. Examples are found in peer-to-
peer networks and multimedia streams that employ con-
trol protocols like RTSP, SIP and H.323 to negotiate port
numbers for data transfer protocols such as RTP.

These flows are complex to monitor and the problem
was considered important enough to develop a special-
purpose tool (mmdump, not unlike tcpdump) to tackle
it [32]. Like xPF [19], mmdump adds statefulness to the
pcap/BPF architecture and in addition allows filters to
be self-modifying. A filter may capture and inspect all
control packets and if they contain the port number to be
used for data, modify itself to also capture these packets.

While the same behaviour is supported in FFPF which
allows an external function to extend the FPL-1 ex-
pression from which it was called (subject to autho-
rization constraints), this may not be best way of han-
dling the problem: self-modifying code is difficult to
trace and debug. Moreover, there is a simpler way to
monitor dynamic ports. For example, given that RTSP
packets are sent on port 554, the filter in Figure 7 fil-
ters out all such packets and passes them to an ex-
ternal function GetDynTCPDPortFromRTSP. When
called, the function scans all RTSP session packets for
the occurrence of ‘Transport’, ‘client_port’ and
‘server_port’ to find the port numbers that will be
used for data transfer (e.g., audio and video). These
ports are stored in MBuf (lines 4-5). If the packet is
not RTSP, we check if the destination port of the packets
is in the array of port numbers and if so, return the value
TRUE (lines 7-9), so that the packet is sent to userspace.
In other words, only data packets of streams that are set
up using RTSP are sent to userland. Note that the exam-
ple is for illustration purposes only. It is a simplified ver-
sion of what real applications would use. For instance,
we only deal with transfers that use TCP (also for the
data) and extract just a single destination port (while the
traffic is likely to be bi-directional).

1. // R[0] initially 0 stores no. of dynports found
2. IF (PKT.IP_PROTO==PROTO_TCP) THEN
3. IF (PKT.TCP_DPORT==554) THEN
4. MEM[R[0]]=EXTERN("GetDynTCPDPortFromRTSP",0,0);
5. R[0]++;
6. ELSE
7. FOR (R[1]=0; R[1] < R[0]; R[1]++)
8. IF (PKT.TCP_DPORT == M[R[1]]) THEN
9. RETURN TRUE;

10. FI
11. ROF
11. FI
12. FI
12. RETURN FALSE;

Figure 7: Monitoring dynamic flows

3.3.3 Compile-time checks

The two FPL compilers are able to generate ‘resource
safe’ code, i.e., it is possible to check at compile time
how many resources can be consumed by an expression,
how many loop iterations may be incurred, etc. Neither
FPL language supports pointers and interaction with the
rest of the kernel is limited to the explicitly registered
external functions. Also, while it is not possible to de-
termine the resource consumption of external functions
statically, we are able to check (and control) which func-
tions may be called from a filter. As a result, a sim-
ple authorisation check rejects filter expressions that do
not agree with the local safety policy and no runtime
checks for resource consumption are necessary. This is

explained in the next section. At runtime the code only
checks for array bound violations, divide by zero, etc. By
configuring the size of all buffers and slots as a power-
of-2, bounds checking involves no more than a bitwise
AND.

In an approach modelled after the OKE (see Sec-
tion 3.5), the (trusted) FPL-2 compiler takes the filter ex-
pression, checks whether it is safe and if so, compiles
it to a Linux kernel module which is subsequently com-
piled by gcc. It also generates a compilation record,
which proves that this module was generated by the local
(trusted) FPL-2 compiler. The proof contains the MD5 of
the object code and is signed by the compiler (Figure 8).
We check at load time whether the code was generated
by a trusted compiler and whether the MD5 matches the
code [8].

object code
user FPL

trusted
compiler

"credentials"

resource
restrictions

compile and ’sign’

compilation
record

Figure 8: User compiles kernel module

3.4 Authorisation

It is important to note that the use of FFPF is not re-
stricted to root users. Our view coincides with what
was originally advocated in the packetfilter ap-
proach in Ultrix: limiting access to tools like tcpdump
to a specific user (as found in many existing systems) is
a design decision, not an axiom. Moreover, we think
it is flawed. In FFPF, ordinary users may receive (in
the form of credentials) explicit permission to monitor
the network (possibly with restrictions, e.g., only pack-
ets with specific addresses)..

For all control operations, e.g. when flow grabbers are
instantiated or filters connected (Figure 9), users present
authorisation information. The information required de-
pends on language, user id and group id. When an FPL-2
filter is instantiated, users provide both object code and
compilation record. The authorisation module checks
whether the code is indeed FPL-2 code generated by the
local compiler. If so (and all other authorisation checks
are also passed), FFPF instantiates it. All authorisation
information is normally stored in a single directory indi-
cated by an environment variable. As a result, the checks
are transparent to the user.

Authorisation control is implemented as a stand-alone
daemon called at instantiation time. The daemon com-
pares flow definitions both with the users’ credentials and
with the host’s security policy and returns a verdict (‘ac-

Kernel
User

flow A
flow B

Authd
credentials user

= flow instantiate
= send request to authd
= authd returns verdict
= if OKAY, instantiate

FFPF-kernel

flow C

authorised?

yes

instantiate

1

2

3

4
1
2
3
4

flow spec C

Figure 9: User loads module in the kernel

cept’ or ‘reject’). Credentials and trust management in
FFPF are implemented in KeyNote [6]. The daemon pro-
vides fine-grained control that allows for complex poli-
cies. For instance, although we don’t use most of them in
the current distribution for simplicity reasons, it is pos-
sible to specify such policies as: (a) a call to external
function strsearch is permitted for packets arriving
on eth0 only if it is preceded by a sampling function, (b)
all calls to an external function drop must be followed
by a return statement, (c) if no call is made to an external
sampling function, the callback that is requested should
wait for at least 1000 packets (e.g., to limit the number of
callbacks), and (d) filter x may only be connected to fil-
ter y, etc. These policies can only be checked if the entire
flow definition is available. The examples show that au-
thorisation control guards against ‘unsafe’ flow grabbers,
but can also be used to guard against ‘silly’ mistakes.

Authorisation control is optional. For instance, if the
only party using FFPF is the system administrator, au-
thorisation control may be left out to simplify manage-
ment. A slightly modified version of the FFPF authorisa-
tion control daemon is also used in the SCAMPI network
monitoring project [30].

3.5 Third-party external functions

The final two languages supported by FFPF are C and
OKE-Cyclone. They are not intended to be used for
packet processing by normal users on a day-to-day ba-
sis (although this is not precluded), but rather for im-
plementing fast filters or external functions that can be
called from FPL-1 or FPL-2. Writing kernel modules in
C is too complex for most users, and writing code in the
OKE is even more complex than that. We expect only
power users to exploit the ‘native code extensibility’ fea-
tures. Even so, once written and declared safe, the code
and credentials needed to install such code can be given
to third-parties.

External functions written in C and compiled as ker-
nel modules can only be loaded by the system adminis-
trator. However, in the Open Kernel Environment [7]2

it was shown how third-party users can load fully opti-

2Available from www.liacs.nl/˜herbertb/projects/oke/

mised native code in the Linux kernel, without compro-
mising safety in any way. OKE support was added to
FFPF, so that even non-root users are allowed to load
fast native functions in the kernel and register them with
FFPF. Subsequently, these functions can be called by or
connected to filter expressions just like ordinary external
functions.

The FPL-2 way of injecting code was directly mod-
elled after the OKE, so compilation and instantiation are
as sketched in Figures 8 and 9, except that the language
used in the OKE is OKE-Cyclone , a ‘crash-free’ version
of C [20]. Unlike FPL-2, this is a language that sup-
ports pointer memory allocation and full interaction with
the kernel. Accordingly, to be able to generate ‘resource
safe’ code, the compiler must check and instrument the
user code much more strictly. Depending on the creden-
tials provided by the user the OKE compiler restricts the
user code in terms of access to resources, e.g. CPU, heap,
and stack usage, access to APIs, access to sensitive fields
in packets, accesses to kernel heap, etc.

Using the OKE, users no longer depend on root users
to load the desired functionality as native code. The cost
of full resource control in the OKE is roughly 10% com-
pared to plain C. Like authorisation control, the OKE is
optional. We refer to [7] for a discussion of related work
in safe kernel programming.

3.6 FFPF packet sources

Packets enter the FFPF framework via a call to
an FFPF function called hook_handle_packet()
which takes a packet as argument. As this is the only
interface between the code responsible for packet cap-
ture and the FFPF packet handling module, it is easy to
add new packet sources. Currently, three sources are im-
plemented.

The first source, known as netfilter, captures
packets from a netfilter hook. Netfilter is an efficient ab-
straction for packet processing in Linux kernels (from
version 2.4 onward). The second source, known as raw,
also works with older kernels. The third packet source,
known as ixp, differs from the other two in that the
IXP1200 device is assumed to be dedicated to monitor-
ing in the FFPF framework3. As this packet source is a
substantial project in and of itself, we will summarise its
main characteristics in a separate section.

3If the IXP is used as a ‘normal’ NIC (e.g., as described in [23]),
FFPF’s standard packet sources work without modification.

4 The IXP1200 packet source

4.1 The IXP1200 processor

The Intel IXP1200 runs at a clockrate of 232 MHz and
is mounted on a Radisys ENP2506 board together with
8 MB of SRAM and 256 MB of SDRAM. The board con-
tains two Gigabit network ports 1©. Packet reception and
packet transmission over these ports is handled by the
code on the IXP1200 processor 2©. The Radisys board is
connected to a Linux PC via a PCI bus 3©. The IXP itself
consists of a StrongARM host processor running embed-
ded Linux and six independent RISC processors, known
as microengines. Each microengine has its own instruc-
tion store and register sets. On each of the microengines,
registers are partitioned between 4 hardware contexts or
‘threads’ that have their own program counters and allow
for zero-cycle context switches.

Figure 10: The IXP1200 NPU

4.2 FFPF on the IXP1200

The PBuf in the IXP implementation resides in
SDRAM on the network card. FFPF maps the packet
buffer as well as the other FFPF buffers into the host ad-
dress space to support zero-copy functionality. A sepa-
rate control structure, consisting of packet descriptors on
a hardware-supported LIFO is kept in SRAM.

4.2.1 The microengines

A single microengine per Gigabit port is responsible for
receiving and buffering packets in PBuf . All remaining
microengines execute application-specific filter expres-
sions. For this purpose, we implemented an FPL-2 com-
piler that generates Intel’s microengine-C. On each of the
microengines a skeleton main loop with a slot for user
code is provided by the FFPF framework. Users with
the right credentials may ‘plug in’ FPL-2 expressions in
this slot. When such a flow grabber is instantiated, the
complete program is loaded on the microengine.

An FFPF IXP1200 filter is bound to a microengine’s
filter. As a consequence, the IXP1200 can support a max-
imum of five filters. As the IXP1200 is considered ‘ob-
solete’ and no longer supported by Intel, and newer ver-
sions of the IXP support more microengines at higher
clockrates, both the number of filters that can be sup-
ported and their speeds may be expected to increase.

A filter uses all four threads to process the packets
one by one. If the filter determines that the packet
is interesting, the microengine places an index for the
packet in the filter’s IBuf . Otherwise, a special function
pkt_drop() marks the packet as finished by setting a
flag in the SRAM packet descriptor entry. In addition, it
checks if all other filters are also finished with the packet.
If so, the packet descriptor will be reclaimed.

4.2.2 StrongARM core components

The StrongARM components are responsible for con-
trol tasks, including initialization, loading and control
of microengines, memory mapping of SDRAM to the
host, initialization of different memory buffers, etc. It
is also responsible for signalling across the PCI bus. For
instance, in a ‘slow-readers preference’ implementation,
the StrongARM receives the ‘advance read pointer’ mes-
sages from the host.

4.3 To copy or not to copy

While many research projects aim for zero-copy imple-
mentations, we argue that this is not always optimal. For
this reason, we developed three implementations: (1)
zero copy, (2) always copy packets to the host processor,
and (3) only copy packets that have been marked as in-
teresting by a host-side flow. Which version will be used
by FFPF can be decided by the administrator at runtime.

The problem with zero-copy is that packet accesses
from the host inevitably become slow, and if the av-
erage number of accesses per packet exceeds a certain
threshold, the performance decreases. For instance, the
zero-copy implementation just described works well, if
most of the packet accesses are performed by the micro-
engines and few or none by the host applications. Once
the host application also needs to access the packet exten-
sively, most reads have to cross the PCI bus. While some
benefit may be expected from prefetching (reducing the
overhead to less than a round-trip time), the penalty is
still severe. If on the other hand, we had chosen the in-
verse zero-copy solution, whereby packets were immedi-
ately written to host memory and not stored in on-board
SDRAM (ignoring potential bus bandwidth problems),
host accesses would be optimised at the expense of the
code on the microengines. We conclude that in situations
where both the host and the IXP have an average num-
ber of accesses per packet that is substantial compared

to a single copy across the bus, copying the interesting
packets once is always better than a zero-copy solution.

5 Experimental analysis

The FFPF architecture is arguably more complex than
many of its competitors. A possible consequence of
increasing expressiveness may be a decrease in perfor-
mance of simple tasks. To verify FFPF’s applicability in
the general case we have directly compared it with the
widely used Linux socket filter (LSF), by running iden-
tical queries through (a) libpcap with Linux’ LSF back-
end, and (b) libpcap based on an FFPF implementation.
We realise that for various aspects of filtering faster so-
lutions may exist, but since the number of different ap-
proaches is huge and none would be ‘obvious’ candidates
for comparison, we limit ourselves to the most well-
known competitor and compare under equivalent config-
urations (using the same BPF interpreter, buffer settings,
etc.).

To show their relative efficiency we compare the two
packet filters’ CPU utilization (system load) using OPro-
file4. Since packet filtering takes place at various stages
in kernel and userspace, a global measure such as system
load can convey overall processing costs better than in-
dividual cyclecounters. Results of subprocesses are dis-
cussed using clockcycle counts later on. Both platforms
have been tested with the same front-end, tcpdump
(3.8.3). Use of the BPF interpreter was minimized as
much as possible: only a return statement was executed.
All tests were conducted on a 1.2 GHz Intel P3 work-
station with a 64/66 PCI bus running Linux 2.6.2 with
the new network API (NAPI), using FFPF with FRP and
circular buffers of 1000 slots.

5.1 Packet sniffing performance

Figure 11 shows the overhead incurred by running the
packet filters at increasing bitrates for 1500 byte packets
(600Mbps is the maximum rate we are able to generate
reliably from a single source). While not shown in the
figure, we verified that packet size plays no role in this
experiment, only the packet rate. In general, we can see
that FFPF makes more efficient use of the system than
LSF, as the amount of FFPF idle time for high rates may
exceed that of LSF by a factor of two, depending on the
capture length. Unlike LSF, FFPF performance, while al-
ways better than LSF for high rates, depends strongly on
the maximum packet capture length. Varying the num-
ber of slots in the packet buffer has a similar effect on
performance, which leads us to conclude that it is prob-
ably caused by memory access and cache behaviour. As
LSF lacks a circular buffer, cache misses will be rare.

4http://oprofile.sourceforge.net

Figure 11: System idle time for FFPF and LSF as a function
of the bandwidth for different capture lengths

Larger caches, or tweaking of buffer size helps to allevi-
ate the dependency. However, this was not done in these
experiments. The drop rate for FFPF in all of these con-
figurations is negligible, while for LSF at 600 Mbps the
drop rate is 2-3%, depending on the capture size.

The use of shared buffers in FFPF reduces copying
and context switching, especially if the number of ap-
plications increases. It is our hypothesis that network
monitoring will be increasingly important and that mul-
tiple different applications will want to filter overlapping
traffic (e.g., for intrusion detection, traffic engineering, a
sysadmin interested in an overview of activity of proto-
cols, etc.).

Figure 12 shows, for high bitrate, how the two frame-
works scale when starting an increasing number of
tcpdump applications with overlapping flows. Since
LSF duplicates much of the work for each application,
it quickly saturates. We should point out that for rea-
sons unknown to us, OProfile never reports 0% idle time
(the minimum is always 2-3%). Even with just two si-
multaneous applications LSF reaches maximum system
load and consequently starts dropping packets. With 6
client applications LSF drops between 64% (LSF-100)
and 75% (LSF-800) of all incoming packets. FFPF, on
the other hand, drops 10% (FFPF-100) to 15% (FFPF-
800).

Interestingly, as the CPU load never reaches 100% for
FFPF, the drop cannot be attributed to starvation. Rather
it is caused by buffer overflow: by keeping the number of
PBuf slots constant throughout the experiments (1000
slots), there were not enough slots to support six parallel
client applications. Increasing the number of slots will
decrease the droprate due to buffer overflow, but will in-
crease overall system load due to cache and line misses.
However, even without tweaking FFPF clearly outper-
forms LSF. Its more gradual performance degradation
can be expected as little work is duplicated. Filtering
is handled in the kernel and duplicate tasks are merged.

The remaining performance penalty is therefore related
only to userspace data output and the remaining context
switches.

Figure 12: Idle time as function of the no. of concurrent ap-
plications for various capture lengths at 600Mbps

5.2 Analysis of operational costs

We have shown that FFPF increases packet filtering ef-
ficiency even for relatively simple tasks. The previous
tests fail to show, however, where the performance gains
originate and how the system would operate with more
complex filters. Table 1 breaks down the overhead in
several subtasks.

Rows 1 − 4 deal with general overhead, namely the
calling of a filter , the total overhead per filter in the
flowgraph (with filters that return immediately after be-
ing called to show only framework overhead), the sav-
ing of an element in an index buffer and the saving of a
1500B packet to PBuf . The decrease in cost by a fac-
tor 50 for saving a reference in IBuf over saving a full
packet shows that in the presence of overlapping flows,
FFPF’s flowgroups can truly increase efficiency. This,
combined with memory mapping of buffers, is perhaps
the most important factor to the gradual degradation of
performance when running multiple applications.

Rows 5 − 8 show resource consumption for a num-
ber of often executed filters, namely the Aho-Corasick
pattern matching algorithm used in snort [31], and a
simple tcpdump filter5 executed in FPL2 code and BPF
respectively. Rows 7 and 8 show that FPL2 is four times
as efficient as BPF, even for such a trivial filter. While
not shown, cost savings grow with expression complex-
ity (as expected). Unfortunately, the performance of re-
ally elaborate filters, such as those shown in Figures 6

5“ip src 192.168.1.3 and ip proto \udp and dst port 54321”

task cycles
1 calling a filter 71
2 single filter stage in flowgrabber 171
3 saving index in IBuf 154
4 storing packet in PBuf 7479
5 waking up user process 624
6 snort’s Aho-Corasick algorithm (match) 1000
7 same but without match 9900
8 FPL-2 filter 185
9 BPF filter 740

Table 1: Breakdown of various types of overhead in cycles

and 7, cannot be compared, as such complex filters can-
not be expressed in BPF.

Pattern matching can also be seen to be costly. We
show the case where an application (e.g., snort) is only
interested in packets that contain a signature. Especially
when a signature is not found after scanning the entire
packet processing costs are high (the result shown is for
1500 byte packets). By executing this function in the
kernel, FFPF eliminates a journey to userspace for ev-
ery packet, avoiding unnecessary packet copies, context
switches and signalling. Note that even compared to the
high overhead of pattern matching, the overhead of stor-
ing packets is significant.

The complete cost of context switching is hard to
measure due largely to the asynchronous nature of
userspace/kernel communication. One measure that is
quantifiable is the cost to wake up a user process, row 5

in Table 1. At 600 cycles (4 times the overhead of a
filter stage), this is a significant cost. To minimize this
overhead users can reduce communication by batching
packets. Waking up a client process only once every N

packets reduces this type of overhead by N−1. In FFPF,
N is configured by the size of the circular buffers and can
be thousands of packets.

Furthermore, comparing filtering (row 5 − 8) and
framework (rows 1−4) overhead shows that costs due to
FFPF’s complexity contributes only a moderate amount
to overall processing. Finally, we discuss in a related
publication that the IXP implementation is able to sus-
tain full Gigabit rates for the same simple filter that was
used for Figure 1, while a few hundred Mbps can still be
sustained for complex filters that check every byte in the
packet [29]. As the FPL-2 code on the IXP is used as
pre-filtering stage, we are able to support line rates with-
out being hampered by bottlenecks such as the PCI bus
and host memory latency, which is not true for most ex-
isting approaches. We conclude that FFPF can be used as
an efficient solution for both simple (e.g. BPF) and more
complex (sampling, pattern matching) tasks.

6 Related work

Much of the related work was discussed in the text. In
this section, we discuss projects that, although related,
could not easily be linked with any specific aspect of
FFPF.

MPF enhances the BPF virtual machine with new
instructions for demultiplexing to multiple applications
and merges filters that have the same prefix [34]. This
approach is generalised by PathFinder which represents
different filters as predicates of which common prefixes
are removed [3]. PathFinder is interesting in that it is
amenable to implementation in hardware. DPF extends
the PathFinder model by introducing dynamic code gen-
eration [17]. BPF+ [5] shows how an intermediate static
single assignment representation of BPF can be opti-
mised, and how just-in-time-compilation can be used to
produce efficient native filtering code. All of these ap-
proaches target filter optimisation especially in the pres-
ence of many filters, and as a result are not supported
directly in FFPF (although it is simple to add them as
external functions). With FPL-2, FFPF relies on gcc’s
optimisation techniques and on external functions for ex-
pensive operations.

Like FPL-2, and DPF, the Windmill protocol filters
also target high-performance by compiling filters in na-
tive code [24]. And like MPF, Windmill explicitly
supports multiple applications with overlapping filters.
However, compared to FPL-2, Windmill filters are fairly
simple conjunctions of header field predicates. MPF ex-
tends the BPF instruction set to exploit the fact that most
filters concern the same protocol, so that common filter
tests can be collapsed. It seems that the suppport is at the
level of assembly instructions which makes it fairly hard
to use. Moreover, for each of these approaches packets
are still copied to individual processes and require a con-
text switch to perform processing other than filtering. As
FFPF is extensible and language neutral, each of these
approaches can be added to FFPF if needed.

Operating systems like Exokernel, and Nemesis [16,
22] allow users to add code to the operating system and
implement single address spaces to minimise copying.
While FFPF no doubt can be efficiently implemented on
these systems, one of its strengths is that it minimises
copying on a very popular OS that does not have a single
address space.

Support for high-speed traffic capture is provided by
OCxMon [2]. Like the work conducted at Sprint [18],
OCxMon supports DAG cards to cater to multi-gigabit
speeds [10]. Unlike FFPF, both approaches have made
an a priori decision not to capture the entire packet at
high speeds.

Nprobe is aimed at monitoring multiple protocols [27]
and is therefore, like Windmill, geared towards applying
protocol stacks. Also, Nprobe focuses on disk bandwidth

limitations and for this reason captures as few bytes of
the packets as possible. FFPF has no a priori notion of
protocol stacks and supports full packet processing.

Gigascope is a stream database for network analy-
sis that resembles FFPF in that it supports an SQL-like
stream query language that is compiled and distributed
over a processing hierarchy which may include the NIC
itself [11]. The focus is on data management and there is
no support for backward compatibility, peristent storage
or handling dynamic ports.

Most related to FFPF is the SCAMPI architecture
which also pushes processing to the lowest levels [30].
SCAMPI borrows heavily from the way packets are
handled by DAG cards [10]. It assumes the hard-
ware can write packets immediately in the applications’
address spaces and implements access to the packet
buffers through a userspace daemon. Common NICs are
supported by standard pcap whereby packets are first
pushed to userspace. Moreover, SCAMPI does not sup-
port user-provided external functions, supports a single
BMS and relies on traditional filtering languages (BPF).
Finally, SCAMPI allows only a non-branching (linear)
list of functions to be applied to a stream.

7 Conclusions and future work

In this paper, we discussed the architecture and imple-
mentation of the fairly fast packet filter. FFPF provides a
complete monitoring platform that caters to most appli-
cations. It was shown to be both more flexible and more
efficient than existing approaches. Speed is gained by
minimising both packet copying and context switching,
pushing processing to the lowest levels, and executing
computationally expensive functions as native code. It
was demonstrated that FFPF outperforms Linux socket
filters even for traditional applications that make no use
of FFPF’s more advanced features. The concepts of
flows and flow groups, the concatenation of expressions,
the buffering mechanism that favours fast flows and the
minimisation of copying are generic mechanisms that
may serve as the basis for fast packet processing in any
OS.

In a future version of FFPF, we will explore the no-
tion of flow groups further. Specifically, readers that are
‘too slow’ will be automatically placed in a separate flow
group, lest they hinder fast applications. Also, we will
shortly release a version of the architecture for use in ap-
plication domains other than monitoring. For instance,
in addition to packet reception, this version will be able
to block, edit and (re)transmit packets, allowing for uses
such as firewalling, network address translation and rout-
ing. Most of the required functionality is implemented,
but currently not enabled in FFPF. Finally, we are in the
process of developing a distributed version of FFPF.

Acknowledgments

This work was partly supported by the EU SCAMPI
project IST-2001-32404, while Intel provided the
IXP1200 network cards. A massive thanks is owed to the
following people for commenting on earlier versions of
this paper: Luca Deri (Netikos), Kobus van der Merwe
(AT&T Labs), Andrew Moore (Cambridge University,
UK), Sean Rooney (IBM Research, Zurich), and Jeffrey
Mogul (HP Labs).

References

[1] Kostas G. Anagnostakis, S. Ioannidis, S. Miltchev, and
Michael B. Greenwald. Open packet monitoring on
flame: Safety, performance and applications. In Proc. of
IWAN’02, Zuerich, Switzerland, December 2002.

[2] J. Apisdorf, k claffy, K. Thompson, and R. Wilder.
Oc3mon: Flexible, affordable, high performance statis-
tics collection. In 1996 USENIX LISA X Conference,
pages 97–112,, Chicago, IL, September 1996.

[3] Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L.
Peterson, and Prasenjit Sarkar. Pathfinder: A pattern-
based packet classifier. In Operating Systems Design and
Implementation, pages 115–123, 1994.

[4] A. Bavier, T. Voigt, Wawrzoniak M, L. Peterson, and
P. Gunningberg. Silk: Scout paths in the linux kernel, tr
2002-009. Technical report, Dept. of Information Tech-
nology, Uppsala University, Uppsala, Sweden, February
2002.

[5] A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploit-
ing global data-flow optimization in a generalized packet
filter architecture. In SIGCOMM, pages 123–134, 1999.

[6] Matt Blaze, Joan Feigenbaum, John Ioannidis, and An-
gelos D. Keromytis. The KeyNote trust-management
system version 2. Network Working Group, RFC 2704,
September 1999.

[7] H. Bos and B. Samwel. Safe kernel programming in the
OKE. In Proc. of OPENARCH’02, New York, USA, June
2002.

[8] Herbert Bos and Georgios Portokalidis. Packet monitor-
ing at high speed with FFPF. Technical Report TR-2004-
01, LIACS, Leiden University, Leiden Netherlands, Jan-
uary 2004.

[9] Herbert Bos and Bart Samwel. The OKE Corral: Code
organisation and reconfiguration at runtime using active
linking. In Proceedings of IWAN’2002, Zuerich, Sw., De-
cember 2002.

[10] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and
M. Pearson. Design principles for accurate passive
measurement. In Proceedings of PAM, Hamilton, New
Zealand, April 2000.

[11] Chuck Cranor, Theodore Johnson, Oliver Spatschek, and
Vladislav Shkapenyuk. Gigascope: a stream database for
network applications. In Proceedings of the 2003 ACM

SIGMOD international conference on on Management of
data, pages 647–651. ACM Press, 2003.

[12] Mihai Cristea and Herbert Bos. A compiler for packet
filters. In Proc. of ASCI, Netherlands, June 2004.

[13] Luca Deri. Improving passive packet capture:beyond de-
vice polling. http://luca.ntop.org/, 2004.

[14] Peter Druschel and Gaurav Banga. Lazy receiver process-
ing (lrp): a network subsystem architecture for s erver
systems. In Proceedings of the second USENIX sympo-
sium on Operating systems de sign and implementation,
pages 261–275, 1996.

[15] Aled Edwards, Greg Watson, John Lumley, David Banks,
Costas Calamvokis, and C. Dalton. User-space protocols
deliver high performance to applications on a low-cost
gb/s lan. SIGCOMM Comput. Commun. Rev., 24(4):14–
23, 1994.

[16] D. R. Engler, M.F. Kaashoek, and J.W. O’Toole Jr. The
exokernel approach to extensibility (panel statement). In
Proc. of OSDI’94, page 198, Monterey, Ca., November
1994.

[17] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast,
flexible message demultiplexing using dynamic code gen-
eration. In SIGCOMM’96, pages 53–59, 1996.

[18] G. Iannaccone, C. Diot, I. Graham, and N. McKeown.
Monitoring very high speed links. In ACM SIGCOMM
Internet Measurement Workshop 2001, September 2001.

[19] S. Ioannidis, K. G. Anagnostakis, J. Ioannidis, and A. D.
Keromytis. xPF: packet filtering for low-cost network
monitoring. In Proc. of HPSR’02, pages 121–126, May
2002.

[20] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of C. In USENIX
2002 Annual Technical Conference, June 2002.

[21] Ken Keys, David Moore, Ryan Koga, Edouard Lagache,
Michael Tesch, and k claffy. The architecture of Coral-
Reef: an Internet traffic monit oring software suite. In
PAM2001. CAIDA, RIPE NCC, April 2001.

[22] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design and
Implementation of an Operating System to Support Dis-
tributed Multimedia Applications. JSAC, 14(7), Septem-
ber 1996.

[23] Kenneth Mackenzie, Weidong Shi, Austen McDonald,
and Ivan Ganev. An intel IXP1200-based network in-
terface. http://www.ixaedu.com/resources/,
2003.

[24] G. Robert Malan and F. Jahanian. An extensible probe
architecture for network protocol performance measure-
ment. In Computer Communication Review, ACM SIG-
COMM, volume 28, number 4, Vancouver, Canada, Octo-
ber 1998.

[25] S. McCanne and V. Jacobson. The BSD Packet Filter: A
new architecture for user-level packet capture. In Proc.
1993 Winter USENIX conference, San Diego, Ca., Jan-
uary 1993.

[26] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet fil-
ter: An efficient mechanism for user-level network code.
In Proc. of SOSP’87, pages 39–51, Austin, Tx., Novem-
ber 1987. ACM.

[27] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt.
Architecture of a network monitor. in proc. of PAM’03,
2003.

[28] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans
Kaashoek. The Click modular router. In Symposium on
Operating Systems Principles, pages 217–231, 1999.

[29] Trung Nguyen, Willem de Bruijn, Mihai Cristea, and Her-
bert Bos. Scalable network monitors for high-speed links:
a bottom-up approach. In IPOM’04, Beijing, China,
2004.

[30] M. Polychronakis, E. Markatos, K. Anagnostakis, and
A. Oslebo. Design of an application programming in-
terface for ip network monitoring. In Proc. of NOMS’02,
Seoul, Korea, April 2004.

[31] M. Roesch. Snort: Lightweight intrusion detection for
networks. In Proceedings of the 1999 USENIX LISA Sys-
tems Adminstration Conference, 1999.

[32] J. van der Merwe, R. Caceres, Y. Chu, and C. Sreenan.
Mmdump - a tool for monitoring internet multimedia traf-
fic. ACM Computer Communication Review, 30(4), Oc-
tober 2000.

[33] D. Wallach, D.Engler, and M.F. Kaashoek. ASHs:
Application-specific handlers for high-performance mes-
saging. In Proc. of SIGCOMM’96, pages 40–52. ACM
Press, 1996.

[34] M. Yuhara, B.N. Bershad, C. Maeda, and J. E. B. Moss.
Efficient packet demultiplexing for multiple endpoints
and large m essages. In USENIX Winter, pages 153–165,
1994.

