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Abstract. We present a framework that enables application developers to create 
complex and application specific network services. The essence of our 
approach is to utilize programmable network elements to create a software 
representation of network elements in the application. We show that the typical 
pattern of an application specific network service is a control loop in which 
topology, paths, and services are continuously monitored and adjusted to match 
application specific qualities. We present a platform in which network control 
applications can be developed and illustrate possible use cases. Based on these 
use cases, new research questions are identified.  
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1   Introduction 

Almost every type of network implements measures to guard against unexpected 
environmental changes, such as the effects of failing links, changing traffic patterns or 
the failure of network nodes themselves. Such measures can be considered as 
optimization of network resources with respect to network robustness. At the basis of 
the optimization of network resources are programs that control the response of the 
network to changes in and outside of the network. Moreover, actively controlling 
network resources is crucial to maintain the network service that is delivered to 
applications. 

Optimizations have a certain penalty in realistic situations. For example, in sensor 
networks [1] minimizing the transmission power of sensor antennae optimizes battery 
lifetime, but impacts connectivity. Depending on the application and the actual 
situation, engineers will choose an optimum. Generally, the optimum network service 
is application-specific, yet in most networks, application programmers have no 
control over the network. One reason is that a general applicable, conceptual and 
technical framework to program the network is absent [2].  

In the absence of any notion of specific application demands, as is usually the case, 
network providers offer typically a best or constant effort network service. 
Theoretically at least, computer programs can be so specific in their service 



requirement and optimal response to disturbances that network providers cannot 
configure and control the network for such applications anymore. If cloud 
infrastructures would only run on wind energy, for example, the amount and direction 
of wind will continuously change the energy available for computing and network 
resources. In such cases, (partial) control over the network must also be transferred to 
a computer program, i.e. the application domain, to automate continuous 
reconfiguration of the infrastructure. 

Traditionally, networks have been designed according to well-defined requirements. 
One could say that at this point application domain knowledge enters the network 
domain. Conversely, application engineers may use the interface of a given network 
service, e.g. sockets in the Internet, to include the network in the application logic. 
Here, we extend the latter approach; any application-specific property of a network 
service becomes a network control issue programmed in the application domain, i.e. a 
dynamic user network interface. Moreover, we define the basic framework needed to 
design and build network control programs in the application domain. 

In Section 2 we review state of the art of related areas in programmable networks, 
overlay network and sensor networks that allow network control from the application 
domain. Then, in Section 3, the application framework is presented and its functional 
components are described in Section 4. In Section 5, the implementation and test bed 
is introduced and Section 6 follows with examples of applications that control 
networks. The paper ends with conclusions and future work in Section 7. 

2   Related Work  

A basic approach to develop a programmable network is to use general-purpose 
computers as Network Elements (NE) and implement C programs that manipulate 
packet streams and network links [3-5]. The programmable and active network [6, 7] 
community developed the architectures for dynamic deployment and extensibility of 
functions in network elements. Other efforts provide programmability in the control 
plane of networks, while remaining backwards compatible with current Internet 
technologies [8-11]. These technologies enable network operators to offer better 
services to applications. 

Basically, there are two types of limitations in networks that motivate application 
control: (1) limited network functions or (2) limited network resources. If the network 
does not offer enough functionality, a well-known approach is to implement the 
network functions as part of the application, i.e. create and manipulate a virtualized 
network (overlay network). If the network has limited resources to accommodate 
application demands in a best-effort manner, frameworks exist to manage the quality 
of service on behalf of the application [12-14]. Next, we illustrate some approaches 
from related network research areas that deal with these limitations. 

Overlay networks enable developers to redesign and implement, amongst others, 
addressing, routing and multicast services optimal to their application domain [15]. 
Overlay networks are widely used to support specific services, such as distributed 
hash tables [16], anonymity [17], and message passing [18]. Overlay networks might 



lead to sub-optimal utilization of network resources, because the mapping to the 
physical network resources is not open to the application developer. Moreover, 
overlay networks essentially duplicate functions offered by the physical network. 
Recently, some efforts [19] propose to expose physical network properties to 
applications to improve their mapping to the physical network. Assuming that 
networks are properly dimensioned, at least from the user’s perspective, overlay 
networks are a straightforward solution to support their specific network service 
requirements.  

Sensor networks illustrate best limitations in network resources. Sensor networks 
motivate tight integration of applications and network services [20]. Because of the 
resource constraints, sensor network designers attempt to use the scarce resources 
efficiently and various approaches to program sensor networks have been developed 
[21]. In macroprogramming [22], high-level programs use an intermediate language 
to abstract away concurrency and communication aspects in sensor application 
programming. A compiler translates the programs into basic instructions for 
individual nodes, and takes communication characteristics into account. In TinyDB 
[23], communication is integrated with a data query mechanism. Macroprogramming 
and TinyDB show that with a framework that structures the design space of network 
control applications, it becomes possible to design and implement reusable 
components for new applications. 

Our research in advanced applications of networks [24-30] shows that applications 
have different optimal network services. Existing network management systems do 
offer APIs to configure network services [31]. Such APIs implement the network 
abstractions chosen by the network operator. We found that our use cases in hybrid 
networks and sensor networks require more flexible and specific network services 
than those designed and implemented by network operators. Because the application 
domain offers developers more flexibility, it might be more practical to implement 
network services as part of the application. Hence, we developed a model that enables 
developers to program networks as part of their application [32]. The resulting 
framework, User Programmable Virtualized Networks (UPVN), models the 
interworking between networks and applications and provides a conceptual 
framework to investigate design patterns of application-specific network services. 
Here, we shortly introduce the model.  

In UPVN (Figure 1), individual NEs are regarded as resources, which are used 
directly or through the Internet (open lines) as components in application programs. A 
NE component (NC) can be seen as a manifestation of the NE in the application, i.e. a 
virtualized NE. Consequently, all virtualized NEs together create a virtualized 
network, allowing interaction with user programs. To accommodate application 
specific packet processing, to set particular parameters of the NE, and to facilitate 
other functions NEs play in a UPVN, NEs have the ability to deploy Application 
Components (ACs). 

UPVN’s development is application driven; creating only those facilities that are 
crucial for applications while other operations remain automated. The NE uses 
technologies, such as Grid- and web services, to expose interfaces on the Internet. 
Through the interfaces a NE exposes, various applications interact simultaneously 



with the NE. As such, each application is capable to optimize the behavior of the NE 
accordingly. During application development, the NE appears as a software object, 
i.e. Network Component (NC), in the development environment. During run-time, 
state of the art technology allows dynamic extension of the set of NEs the applications 
interacts with.  

The UPVN model leads to a practical framework in which network control is 
implemented as part of application domain programs and in which network services 
and optimizations are expressed in user-definable qualities. In the past, we developed 
a prototype UPVN that showed that the approach is feasible [33]. In Section 4 and 5, 
we present the design and implementation of a prototype that includes the control 
concepts we propose. In the following section, the application framework for 
programmable network control is introduced. 

 

Fig. 1. Interworking model of applications and networks. 

3   Application Framework for Network Control 

Programmable network element technologies support dynamic network service 
composition for applications that need new network functions, such as network 
embedded trans coding of video streams. If changes occur in the network, however, 
applications must adapt to the new situation. The adaptation process may be at the 
end-points, such as in TCP flow control process but may also be in the network, such 
as a process that changes the edge weights of a shortest path routing protocol [34]. 
The adaptation process typically consists of (1) inferring (possibly incomplete) 
network information, (2) calculating network state (3) and adjusting the network to a 
configuration that leads towards the desired optimum. A closed-loop control model, a 
well-known model in control theory to influence the behavior of a dynamic system 
[35], provides a minimal framework for network control (Figure 2). 

In order to match the network to a state that is optimal to an application, the 
application has to collect (possibly incomplete) network information. The application 
developer chooses application specific abstractions (NCx) to update a model the 
application uses internally. The application combines state information from all or a 
subset of NEs to update the internal model. In principle, the internal model can also 
include non-network related information, such as computing or hosting costs, sensor 
information and service level agreements. 

The control application applies an algorithm to find the actions (NCy) needed to 
adjust the network behavior in such a way that it matches the application needs (e.g. a 

network functions is more optimal.
Programmable networks allow other architectures

than the OSI layers. A basic approach to create a pro-
grammable network is to use commodity PCs as Net-
work Elements (NE). This way developers can use ex-
isting software and development tools to implement pro-
grams that manipulate packet streams and network links
[11, 12, 13]. In application development, developers use
a network interface to program and configure software
components that execute in NEs on behalf of the ap-
plication. From programmable networks we know that
there are basically three variants to implement the net-
work interface: (1) Remote Procedure Calls (RPC), (2)
message passing and (3) adding executable code to ap-
plication generated traffic. The architectures of the vari-
ous possible combinations of network interface and pro-
grammable NE technologies are well understood [14].

The User Programmable Virtualized Network
(UPVN) [15] is concept that enables networks to deliver
application specific services using NE components that
developers can program as part of a users application.
The UPVN concept provides an elementary network
model to describe and model interworking between
networks and applications. It provides the necessary
abstractions to address optimization in the network or
application domain. Here, we shortly introduce the
concept.
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Figure 1: Interworking of applications and networks in
User Programmable Virtualized Networks.

UPVN regards individual NEs as resources, which are
exploited directly or through the Internet (open lines) as
components in application programs. A NE component
(NC) can be seen as a manifestation of the NE in the
application, i.e. a virtualized NE. Consequently, all vir-
tualized NEs together create a virtualized network, al-
lowing interaction with user programs (Figure 1). To ac-
commodate application specific packet processing, to set
particular parameters of the NE, and to facilitate other
functions NEs play in a UPVN, NEs have the ability to
deploy Application Components (ACs).

UPVN’s development is application driven; creating
only those facilities that are crucial for applications. The
NE uses technologies, such as Grid- and web services, to
expose interfaces on the Internet. Through the interfaces

a NE exposes, various applications interact simultane-
ously with the NE. As such, each application is capable
to optimize the behavior of the NE accordingly. During
application development, the NE appears as an object
(NC) in the development environment. During run-time,
our model, as well as state of the art technology, allows
dynamic extension of the set of NEs the applications in-
teracts with.

We implemented several prototypes to validate the
plausibility of the UPVN concept and demonstrated the
first prototype to support high-performance packet pro-
cessing (figure 3) at the Dutch exhibition booth at Su-
per Computing 2008 in Austin, Texas [16]. We showed
experts, e.g. in the fields of mathematics, artificial in-
telligence or compiler technologies, how to apply their
domain knowledge and use existing software to solve
advanced network optimization and control issues. Our
experiences with the UPVN concept and its implemen-
tation led us to the notion of the control loop to describe
the adaptation of network services to application needs.

3 Fitting in the control loop
Applications implement some kind of optimization strat-
egy to manipulate virtualized NEs according to their
needs. An elementary optimization problem consists of
a utility function and a solution space. The goal is to
find the values from the solution space that minimizes
the utility function. An optimizer searches the solution
space to find these values. Typically, an optimizer (1)
collects values, (2) solves the utility function and (3) de-
termine the values that lead towards the optimum.

Utility functions are a common tool to determine the
required dimensioning of network capacity in network
design [17]. Here, the utility function abstracts appli-
cation needs into network properties, such as latency,
throughput and jitter, and a linear program describes
the desired network service. In practice, optimizers can
solve such linear programs with a set of assumptions
about routing for example. Generally, controllers use
a description of application needs (reference) and im-
plement optimization mechanisms to find optima with
regard to the reference.

Both the network domain or the application domain
can implement the controller. In case of the network do-
main, applications need to tell the network their needs.
While this is possible for simple network properties, e.g.
latency, the description of what is optimal to the appli-
cation quickly becomes larger with more complex re-
quirements. In case of the application domain, the appli-
cation need hooks to the network (NCs), so it can con-
trol the network services (ACs). As a consequence, the
application needs to potentially know everything of the
network to find the best network service. The major ad-
vantage of implementing the controller in the applica-



stable, optimized state), which are described by the reference. To implement changes 
in the network, the control application translates decisions into instructions, such as 
create, forward or drop packets specific to each NE involved in the application. This 
means that the system needs to provide a distributed transaction monitor to keep 
network manipulations that involve multiple NE consistent. 

Fig. 2. The application framework to control networks contains a control loop. 

In control theory, a measurement (AC Properties) from the system is subtracted 
from a reference value, which leads to an error value as input for the control 
application. In our framework, the measurements (AC Properties) that represent 
network state may use different metrics compared to the controlled state (AC 
Actions). For example, a controller may manipulate edge weights in shortest path 
routing based on throughput information. Such a scenario is meaningful if the relation 
between throughput and edge weights (δ) is known or can be learnt and would be 
useful to dynamically distribute traffic to avoid congestion, for example [34]. 

Applications exchange information (NCx,y) with NEs over a communication 
network, possibly over the same network the application is controlling (in-band). 
Even though application developers may have access to a separate management 
network, the communication path between network and application complicates the 
design and validation of the controller. Network properties, such as latency and 
packet loss, limit the amount of information that can be exchanged or synchronized. 
So, NE state information can become incomplete, inaccurate or aged. The application 
developer has to understand the limits in information exchange of a given network, 
i.e. observability, when designing the control application. 

This section introduced the abstractions needed to provide the basic framework for 
network control in the application domain. Next, the details related to interworking of 
applications and networks that lead to a functional model are described. 

4   Functional Components 

The OSI reference model organizes the interworking of applications and networks in 
seven layers [36]. The design principle of layering allows decomposition of a 
complex problem, but application specific details may be lost in the process. If 
network elements are virtualized in software, the application interface to the software 
(NCs) can be fine-tuned to the specific problem domain. However, the fine-tuning 

tion domain is that developers can use existing software,
such as libraries or other applications developed by do-
main experts. The assumption is that applications know
what network service is required and that applications
can implement the mechanisms to find the optimum net-
work service. We focus on the latter approach with this
assumption in mind.
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Figure 2: A closed-loop control model between applica-
tion and network.

An application has to collect (incomplete) network in-
formation, calculate an optimum network configuration
and adjust the network to reach the optimal adaptation
of network service (Figure 2). The application devel-
oper chooses application specific abstractions, such as
interactive visualization for a human controller (figure 3)
or existing domain-specific software as controller (fig-
ure 4), to update an internal network model (NCx) and
to manipulate network state (NCy). The internal net-
work model is updated by combining state information
from all or a subset of NEs (NCx). In principle, the
internal network model can also take into account non-
network related information, such as computing or host-
ing costs, energy usage and service level agreements.

A controller applies an optimizer or other algorithm
to find the actions (NCy) needed to adjust the network
behavior in such a way that it matches the application
needs (e.g. a stable, optimized state), which are de-
scribed by the reference. While state information, such
as neighbors, throughput and latency, from a collection
of NEs combine into global network state, actions to im-
pact network state need to translate into actions, such
as create, forward or drop a packet, specific to each
NE involved in the application. This means that actions
that involve multiple NE benefit from using a distributed
transaction monitor to keep network manipulations con-
sistent.

In control theory, the sensor (AC Properties) subtracts
the measurement from the reference value, which leads
to an error value as input for the controller. In our model,
however, the measurements (AC properties) that de-
scribe network state do not have to match the controlled

state (AC Actions). For example, a controller may ma-
nipulate edge weights in shortest path routing based on
throughput information. Such a scenario is meaningful
if the relation between throughput and edge weights (δ)
is known or can be learnt. This example would be useful
for load balancing or routing traffic around undesirable
NEs.

4 Implications of the control loop
When discussing the implications of the control loop,
one should be aware that the complexity of the applica-
tion depends on the network environment. Depending
on the type of application, the AC properties and actions
are at the edges, e.g. do not control routers and switches,
in the data plane or in the control plane of the network.
The following classification of applications follows from
the location of application in the network environment:

Applications that integrate a network service im-
plement alternative addressing, routing or security,
which is optimal to the application. Such applications
have no control over the intermediate network, but form
an overlay of new network functions that map to the in-
terfaces of the underlay.

Applications that are the network service offer al-
ternative network interfaces to other applications, such
as MPLS or openflow [5, 18]. By implementing tech-
nologies in the network other applications have better
control over service levels. The network should support
traffic isolation and application management, i.e. oper-
ating system concepts, to support multiple applications.

Applications that manage a network service use the
hooks or configurable parameters of a network service to
optimize the workings of a network service. In existing
network management systems, the functions are exposed
to the network operator [19] in a centralized system. In
a centralized system, it is straightforward to create an
environment that enables applications to control network
services [20]. We look at the implementation of a typical
application.

4.1 Network model in the application
Any application that implements a controller operates
on a network model, which must be updated by NCx

events or polling. An AC property getNeighor is enough
to discover the network topology from a controller, for
example with a depth-first search. The information is
then translated into an application-specific data struc-
ture, such as a graph model in Mathematica [21]. With
access to throughput (resulting in thptNetwork figure 4)
router configuration, it is trivial to develop a controller
that load balances router traffic by manipulating their
edge weights. This approach shows that developers can
write advanced, yet straightforward controllers using ex-
isting software.



might lead to an application specific organization of network functions. Here, we 
define the organization of functional components to support fine-tuning of the 
application interface and organization of network functions. The functional 
organization preserves the context of the NEs by creating and managing the software 
representation of NEs in the application domain. For example, an application can use 
the software representation of NEs to manipulate traffic of a single strategic point in 
the network for filtering or anomaly detection purposes. 

We identify three layers of abstraction in a distributed program: network element 
execution environment, middleware/orchestration, and application code. The latter 
can be subdivided in two sub layers, namely the programming environment providing 
reusable components such as programming libraries, and the application program. 
The result is a four-layer architecture (Figure 3). Clearly, the architecture resulting 
from the application point of view is similar to programmable network architectures 
[6]. However, the functional components between the application and programmable 
network need to be further defined to support network control from the application 
domain and is described next. 

The orchestration layer (2) facilitates the interworking of software objects and ACs 
located on individual NEs (1). The orchestration layer may also supports basic 
mechanisms, such as discovery services, brokers, billing services, authorization, etc. 
The usefulness of these services depends on the network environment and application. 
In sensor networks, for example, there just may not be enough computational and 
storage resources to support an elaborate set of services.  

The programming environment, layer (3), provides the NC implementation and 
reusable components, such as a Distributed Transaction Monitor (DTM) or breadth-
first search algorithm, to support programming of a collection of NCs. Depending on 
the network environment, some abstractions can be implemented in the ACs, as a 
library in the programming environment or both. For example, the application 
developer might want to program network element interactions in a non-blocking 
manner. Hence, either the programming environment or the orchestration layer must 
facilitate non-blocking interaction mechanisms between ACs and NCs. In our 
implementation (Section 3) we use message passing in the orchestration layer and 
implemented (an easier to program) blocking interface to the application (Section 5). 

 
Fig. 3. Four functional layers characterize practical application domain network control. 
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Because network control is now part of the application domain (layer 4), 
developers can benefit from a large amount of existing software to implement 
network control programs. A characteristic of the control applications is that they 
operate on data structures that represent the network state. Therefore, the 
programming environment (3) explicitly contains a model of the network and the 
orchestration layer must supply the data with which the model can be updated. In 
Section 6, we discuss issues related to the accuracy of the network model. 

Some applications support the construction of a network model that is close to 
mathematical concepts, such as graphs. The Mathematica [37] environment, for 
example, contains a graph data structure, which can be used as a basis for control 
applications that require graph algorithms. By enabling dynamic updates of network 
state into the Mathematica graph data structure, domain experts can simply apply 
graph algorithms to find and remove (through network manipulation) articulation 
vertices; vertices that may disconnect a graph. Besides control, the application layer 
can also include visualization or other means of interaction with the network. The 
integration with toolboxes, such as those available in Mathematica, makes the 
application layer a powerful environment to develop network control applications. 

5   Implementation and Test Bed 

In the preceding sections, we introduced the framework for control applications as 
well as a four-layered functional model to implement such applications. We 
developed a test bed according to the presented functional model (Figure 3) to gain 
practical insight in the implementation of the application framework to support 
network control programs. The test bed implements the first three functional layers 
and enables further exploration of the network control applications that are part of the 
fourth layer.  

5.1   Hardware 

The test bed consists of eight machines (four dual processor AMD Opteron with 
16GB RAM and dual port 10Gb NICs and four Sun Fire X4100 with 4GB RAM and 
1Gb NICs) interconnected by two 1Gb switches and a Dell hybrid 1/10Gb switch. All 
machines run VMWare [38] ESXi hypervisor software and the virtual hardware is 
centrally managed and monitored with VMware vSphere management software. The 
test bed was bootstrapped with one Linux instance containing the software we 
developed, and iteratively grown to 20 instances to create a non-trivial configuration 
of networks and computers (Figure 4). 

The setup involves two datacenter locations: a virtual infrastructure running in our 
datacenter in Groningen and an interactive programming environment including an 
interface to a multi-touch table running in our lab in Amsterdam. The multi-touch 
table enables users to interact with NCs (Section 6). The two locations are connected 
by two OSI-Layer 2 Virtual Private Networks (VPN) on basis of OpenVPN [39]: one 
for control traffic and one for data traffic. At the receiving host in Amsterdam, the 



control and data networks are separated by VLANs. 

5.2   Software 

The primary purpose of developing a prototype is to gain insight in the challenges 
and details to control a network from applications that require dynamic traffic 
manipulation, and to enable experiments with various network control mechanisms. 
The implementation combines several open source software tools into one NE 
platform. We provide a global overview of the software that implements the 
functional layers. 

Packet Processing and Token Networking. Fine-grained packet processing and 
manipulation facilities are implemented in Streamline [4], a tool originally developed 
for high-speed packet filtering and similar to other approaches presented in literature 
(Section 2). However, Streamline differs from other approaches by providing a simple 
and flexible query language to manipulate filter graphs on the fly (Figure 5) and a 
packet processing language FPL [40]. In addition, Streamline also allows dynamic 
loading of kernel modules that provide specific packet manipulation functions.  

We extended Streamline to support insertion, removal and filtering of tags in the 
IPv4 options field, which allows us to bind ACs to network traffic. A Streamline 
expression defines a chain of packet processing modules, which describes the network 
behavior for a particular application on a NE. Filters, such as fpl_tbs allow packets 
with specific tags to pass through a specific chain of packet processing modules. The 
expression is calculated for each NE separately by the control software and a 
distributed transaction monitor manages loading of each expression on the subsequent 
nodes to provision a path, for example. 
Orchestration Software. The orchestration of ACs in the programmable network is 
implemented in Java. ACs available to applications, such as Streamline, are wrapped 

 

Fig. 4. Test bed and network connectivity. 

 

(netfilter_fetch_in) >(fpl_tbs,expression="TOKEN") \ 
 >(fpl_ipdest,expression="DST_IP") >(skb_transmit) 

Fig. 5. A Streamline request in which packets are taken from the Linux Netfilter [41] hook, 
then filtered by token and the IP destination overwritten. 
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by Java objects. Network elements communicate using a peer-to-peer model. ACs 
register as a service on the network element. Each network element knows at least one 
peer to which it can connect (the controller). Currently, all peers connect to a single 
known controller, which provide basic message-passing functions over TCP sockets. 
The controller also provides basic services that involve more than one NE, such as a 
distributed transaction monitor or topology discovery. The basic services are 
implemented as a set of ACs and can be used by network control applications. 
Currently only a single instance of the controller is used. Creating more controllers 
on-demand is a topic for future investigation. (Section 6). 
Network Model. Our implementation provides various active and passive monitoring 
ACs that enables network control applications to create and maintain a network 
model: 
Ping provides basic information about latency and jitter, 
Network Mapper (NMap) [42] can detect nodes in the broadcast domain of an 
interface with ARP, and 
/proc/dev/net is used to retrieve basic throughput information from the Linux kernel, 
Uptime collects CPU load information. 
The controller contains a Dispatcher AC that allows other ACs to subscribe to events, 
such as NEs registering to or detaching from the network and is the entry point for 
peers that connect to the control network. The Dispatcher AC subscribes to all known 
network elements and triggers network discovery requests when a new NE registers, 
consequently updating its network model to the new network state. 
AC Management. Management functions, such as starting, stopping and 
manipulating AC of the programmable network implementation, are implemented in 

the Ruby [43] programming language. This allows new network behavior to be added 
at runtime, e.g. Java classes, kernel modules or installation of complete applications. 

 

Fig. 6. A multi-touch table enables direct manipulation of programmable network components 
of 20 virtual machines. A user (a) modifies a sampler component of a streamline graph that 
multicasts a video to screen (b) and (c). As a result, the stream of (b) is distorted, while the 
other remains normal.  
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For example, a ruby script with instructions to compile new code for Streamline and 
insert it into the kernel can be remotely executed on NEs. 

6   Network Control Programs 

We showed a practical implementation of the model in Section 4, which enables a 
straightforward prototyping of network control programs. To test the setup an 
interface to view and modify the state of NCs was built. It allows manipulation of 
video streams produced by several nodes, which can be displayed on computers with 
a screen attached. By manipulating the NCs, a user can interact with the 
programmable network: create and modify paths and modify NE parameters, such as 
the packet processing chains of Streamline. We successfully demonstrated the setup at 
Super Computing 2008 in Austin, TX [44]  (Figure 6). 

We developed an interactive programming environment with Mathematica, which 
enabled automation of the possible user manipulations in the setup. Combining 
Mathematica with programmable networks allows advanced, yet straightforward 
implementation of network control applications. We implemented a Java adapter 
between Mathematica and the Management Agent (orchestration layer). The Java 
adapter deals with limitations of Mathematica’s, such as real-time polling of the 
network, while being responsive to user input at the same time. 

The Java adapter enables the Monitor AC to trigger the continuous updates of a 
number of data structures in the Mathematica kernel, such as theNetwork or 

 

Fig. 7. Mathematica’s function Dynamic[] facilitates continuous reevaluation of network state. 
The statement redraws the graph every time theNetwork data structure is updated with 
information of the network (a). Picture (b) and (c) show two stages of topology discovery. 
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thptNetwork, and facilitates the development of control applications in Mathematica. 
An elementary control application is one that visualizes the network state while the 
data structures are updated (Figure 7). For example, the current IP network topology 
can be displayed while the discovery of the network is in progress; fully discovered in 
(a) and two intermediate steps (b) and (c). Another visualization example maps 
throughput measurements on a 3D contour plot (Figure 8). We also implemented 
various control applications using the test bed. For example, two control applications 
avoiding congestion were implemented by switching paths and by dropping packets 
on basis of throughput measurements. Another control application was to developed 
to continuously find and provision disjoint shortest paths [26]. Based on the 
experiments, we identify new research questions. 

Application developers have to consider the accuracy of the network model. For 
network properties as throughput and delay some range of error can be tolerated. 
However, applications that require exact shortest paths require accurate topology 
information. The accuracy of the network model is influenced by the rate at which 
state information is (1) generated, (2) transported and (3) processed. At least (2) and 
(3) have architectural consequences for the control loop. One possible architectural 
consequence is to divide the network in multiple separately controlled domains, 
similar to areas in OSPF. In one extreme, dividing up the network into smaller 
individual control domains eventually leads to a fully decentralized architecture, i.e. 
peer to peer networks. In the other extreme, if network state can be generated, 
transported to and processed fast enough by one controller, then for practical purposes 
a centralized implementation might be preferred. 

Application developers have to make a trade-off between state exchange and the 
processing capabilities of network elements. For example, an application that finds 
and removes articulation vertices can run as (1) a centralized component or, in the 

 

Fig. 8. Network throughput of the test bed visualized in Mathematica. The vertex weights in the 
thptNetwork data structure are updated with throughput values from the programmable 
network. The network topology is mapped to the x-y plane and throughput to the z-axis (in 
bytes per second). This way, a user can detect busy spots network and write algorithms to avoid 
such spots. 



other extreme, (2) can run on each NE under its control. Because the computation of 
articulation vertices requires full topology knowledge, running the application on each 
NE (2) requires additional mechanisms to update and synchronizes changes in 
topology. Between centralized and decentralized implementations of control loops 
many architectural variants exist. Likewise, an enormous variety of control algorithms 
can be expected. On these points applications programmers would benefit from 
research [45] on design patterns of control loops. 

7   Conclusion and Future Work 

Until now, engineers optimize networks at design time and independent of application 
engineers. Examples from sensor networks, hybrid networks and overlay networks 
show a need to control networks at run-time. Past efforts created the programmable 
network element technologies to support dynamic network service composition. In 
this paper, we use these technologies in a framework for network service development 
in which each programmable network element has a software representation in a 
possibly distributed application. We presented an implementation of the framework 
and several network control applications.  

Our implementations are limited to a single application that controls the network. 
In case many applications want control over the network, another control application 
is needed to manage (conflicting) resource demands, i.e. an operating system for 
networks. In the future, however, it can be expected that network management 
systems support mechanisms to host and run applications on the network. Recent 
research also continues in this direction (Section 2). More experience is needed to 
create reusable software components that enable and simplify control application 
development for large networks. 

Control loops are a fundamental part of applications that optimize a specific 
network service as a response to changes in or outside the network. In subsequent 
research we shall determine the operational properties of a control application (e.g. 
how accurate is a given network state, what is the delay between network events and 
the application’s ability to react, how fast can failures be detected). We have shown 
that architectural consequences can be expected when changes in the network occur 
faster than a single control loop can effectuate new adjustments, e.g. in large or 
unstable networks. In this case, the application framework needs to support 
decentralized network control. Hence, to extend the application framework to support 
multi-domain, multi-scale network control is a topic for further research.  
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