
 1

Abstract – Grid workflow management systems automate the
orchestration of scientific applications with large computational
and data processing needs, but lack control over network
resources. Consequently, the management system cannot prevent
multiple communication intensive applications to compete for
network resources, which leads to unpredictable performance.
Currently, the lack of control over network resources may
prevent certain applications, i.e. applications that need high
capacity and Quality of Service, to utilize Grids. Hence, such
applications would use dedicated infrastructures. Because the
costs to build dedicated infrastructures may far exceed the cost of
using existing Grids, the Grid needs to support mechanisms to
optimize the interworking between networks and applications. In
this paper, we present the architecture and proof of concept to
control network resources from Grid workflow management
system and to manage network resources from workflow-enabled
applications at run-time. Depending on the current network
infrastructure capabilities or future advances, applications may
employ existing QoS mechanisms or use application-specific ones
to provide the desired network service. We believe that our
approach leads to performance improvements in communication
intensive applications and enables novel Grid applications, which
require optimal interworking between networks and
applications.

Keywords: Distributed Computing, Network Management,

Workflows

I. INTRODUCTION
Grid workflow management systems enable smart

utilization of computational resources in Grid environments by
allowing scientists to plan, schedule and run complex
application execution scenarios as part of their scientific
experiments. Resource virtualization, i.e. resource as a service,
is one of the basic design principles in Grid architecture to
make the large amounts of resources manageable and easier to
use by scientists. Because most Grid applications have large
computational demands, the attention in Grid computing has
predominantly been focused on effective and efficient sharing
of computational resources.
In recent years, many initiatives have emerged, in which
researchers collect enormous amounts of data from the
environment, such as dikes [1], the sky [2] or from scientific
experiments, such as CERN’s LHC detector [3]. By using the
Grid, a large amount of resources are at the disposal for such

applications, which would otherwise be technically or
financially unfeasible to achieve with dedicated systems. The
term Sensor Grids [4] loosely defines these types of
applications.

Sensor Grid applications are difficult to realize from the
network perspective, because they can only execute well, if
the underlying network supports their communication
demands. On one hand, applications such as e-VLBI, only
need high-speed network connections at the time of an
experiment, but the required link connectivity may change
while the experiment progresses. On the other hand, an early
warning system for dike failure might need to redirect sensor
data to intermediate nodes in the network for filtering or
aggregation before feeding it to computation nodes. Because
sensors cannot know in advance to where the data needs to be
sent, the network has to be configured on beforehand or
adapted at run-time. Unfortunately, such behaviour is hard to
achieve in current Grids, because networks do not expose their
resources and services to the application domain.

Here, we present the architecture and a proof of concept to
control and manage existing network services, such as MPLS
[5] or deploy application-specific ones from Grid workflow
management systems. The novel idea of our approach is that
network elements are virtualized as software objects in the
application domain. The application programmer uses the
programming interface of the software objects to implement a
desired network service. At run-time the workflow
management system deploys the application-specific network
service on the network elements, which enables applications to
control the network elements. Grid workflow management
systems are a natural choice to implement these mechanisms,
because they provide abstractions to consider networks as a
collection of software objects and already provide similar
functions to manage computational and storage resources.
Therefore, it is straightforward to reuse and extend existing
workflow management system with control over networks. To
our knowledge, no architecture or framework is described in
literature to control network resources from workflow
management systems.

The paper is organized as follows. In Section II, we
introduce the problem domain, design issues and the basic
framework. In Section III, we present a proof of concept using

Network Resource Control for Grid Workflow
Management Systems

1,2,4Rudolf Strijkers, 1Mihai Cristea, 1,5Vladimir Korkhov, 3Damien Marchal, 1Adam Belloum,
1Cees de Laat, 1,2Robert Meijer,

1Universiteit van Amsterdam, Amsterdam, The Netherlands,
2TNO Informatie- en Communicatietechnologie, Groningen, The Netherlands,

3CNRS: Centre National de la Recherche Scientifique, Lille, France,
4ETH Zürich, Zürich, Switzerland,

5St. Petersburg State University, Russia

 2

WS-VLAM [6] workflow management system and in Section
IV we present preliminary experiments and results to
demonstrate the feasibility of network control from workflow
management systems. Related work is presented in Section V,
followed by discussion and future work in section VI. The
paper concludes with Section VII.

II. INTERWORKING BETWEEN SENSORS, NETWORKS
AND GRIDS

Typically a Sensor Grid application is composed of three
main components: (1) sensor networks that monitor
environmental properties, (2) computers that process sensor
data and (3) an interconnection infrastructure that connects
sensors to computational resources, either by using the
Internet or dedicated networks.

Depending on type of the observation (Figure 1), sensors
(S) need to be distributed at specific locations (e.g. homes (2),
cities (2, 3, 4) or in rural areas (5)). Depending on their
situation, sensors are connected via: sensor-to-sensor network,
wireless (6) or wired (7) dedicated network or the Internet.
When connected to the Internet, applications only get best-
effort connectivity. In contrast, dedicated networks can
support software plug-ins for application-specific data
transformations, such as aggregation, filtering or pre-
processing of data streams or conversion of sensor network
protocols into Internet or application-specific protocols. Such
networks, or the Internet where necessary, connect sensors to
supercomputers (8), storage (9) or management systems (10).

Workflow management systems (WMS) provide a
transparent and flexible way to compose and execute
distributed applications on the Grid. An intuitive approach
would be to use a WMS to orchestrate all the components of a
Sensor Grid application, i.e. let the WMS care about execution
of software components on distributed computational
resources and the management of interdependencies and data
transfers between these components. But Sensor Grid
applications have specific demands that have to be addressed
by WMS before an implementation is feasible. The most
Sensor Grid demand is to reserve and control network

resources to ensure that sufficient network capacity is
available to transfer data to computational nodes. WMS
already fulfil the task for computational and storage resources.
What are the requirements to include network control?

A. Combined Allocation of Network and Grid Resources
The applications we are considering exhibit a strong

sensitivity to their execution time; they are all connected with
sensors, record and process real-life data at a given sampling
rate. When a sensor produces data, it either has to be stored or
processed immediately. Once a radio telescope turns on, for
example, it is necessary to receive and process the data as it
was transmitted. When this is not fulfilled for a moment,
important events may be missed, wrong correlations may be
made, and the whole experiment may fail. We consider such
applications as time-critical. Time-critical applications need to
have insurance that the environment is properly dimensioned
at run-time. Because Grids can support reservation of
resources on beforehand, Grids can provide this insurance.
However, in order to support experiments that involve sensor
networks, the interconnection networks, shared or dedicated,
need to support resource reservation and control too.

In the case where resources are not known on beforehand,
for example when an application needs to switch to another

data source at run-time, the resource manager has to provide a
function to potentially override the reservations made by other
applications, i.e. the system has to support rank ordering of the
applications in order to decide which applications have
priority above others (Figure 2). In addition, the network and
computing resources need to be reconfigured on the fly to
adapt to the new situation. Because only the application
programmer knows how to organize the resources for the
application, it needs mechanisms to manage computational
resources as well as network resources. Therefore, the
resource manager should be accessible through an application
programming interface.

In the Grid the exact locations of the Grid nodes are
unknown at reservation time. Therefore, we need to match and
reserve network resources after the Grid nodes are allocated. If
the network cannot provide the required resources for the
application, the computation nodes need to be rescheduled.
This process involves coordinated interaction with Grid
brokers and network managers and can be dealt with from a
WMS. An additional benefit of using a WMS is that it can
negotiate and determine the best Grid brokers to submit jobs
to, based on statistics gathered from previous submissions. In

Figure 1. Three major components form a large-scale observation system:
sensors (1-5), computers (8-10) and interconnection networks (6, 7).

Figure 2. Without reservation network services can conflict (1). Reservation
guarantees resources to be available at run-time (2). In order to support
dynamic reservation, a resource manager needs to be able to override other
reservations when needed (3).

resources reserved

control

reserved

control

reserved

control

control
1

2

3 reserved

control

 3

addition, WMS specialize in dynamic and advanced
algorithms for matching, reserving and managing resources.

B. The network as software object in Grid Applications
Networks need to provide enough flexibility to support

network reservation and management required by our class of
Grid applications. In [7] we presented a concept in which
network elements are virtualized as software objects in the
application domain. Our concept regards individual Network
Elements (NEs) as resources, which are exploited directly or
through the Internet as software components in application
programs. A NE component (NC) can be seen as a
manifestation of the NE in the application, i.e. a virtualized
NE. Consequently, all virtualized NEs together create a
virtualized network, allowing interaction with user programs
(Figure 3). To build application specific network services
which involve packet processing, set particular parameters of
the NE, and to facilitate other functions NEs may have in a
network, NEs have the ability to deploy Application
Components (ACs). ACs implement primitives to
communicate with NEs and may employ existing network
technologies or application specific ones [8-10].

The NE uses technologies, such as Web services, to expose
interfaces on the Internet. Various applications can interact
simultaneously with the NE through its interfaces, which are
exposed as Grid services or as software objects in a WMS. As
such, each application is capable to optimize the behaviour of
the NE accordingly. During application development, NEs
appear as objects (NC) in the development environment.
During run-time, our model, as well as state of the art
technology, allows dynamic extension of the set of NEs the
applications interacts with.

By virtualizing network elements as software objects in the
application domain, it becomes possible to control networks
using software. Hence, application domain software can be
used to program and automate the behaviour and management
of network services.

III. IMPLEMENTATION
We developed a proof of concept to gain insight in the

technical challenges involved in the virtualization of network
elements and network control from Grid workflows. For the
implementation we reuse and extend existing Grid software,
such as the Globus Toolkit 4 [11]. The implementation of the
proof of concept consists of two parts, which later are
integrated to one solution.

The first part implements an extension of WS-VLAM

scientific workflow management system with operations to
reserve and control network resources. We integrate a
programming interface of the virtualized network elements
with the programming interface that WS-VLAM provides to
Grid applications to manage computational resources. This
adds network service management to Grid applications, which
use the WS-VLAM application programming interface.

The second part implements a Network Operating System
(NOS), which acts as an access point to the network and its
resources. In principle, the network management system can
implement the task of the NOS. However, network
management systems are designed towards the needs of
network operators, while we are interested in the challenges to
expose the network services to applications. Therefore, the
NOS interface (Figure 4, 4) is modelled after Grid broker to
facilitate the integration with Grid software.

A. WS-VLAM Grid Workflow Management System
WS-VLAM aims to provide and support coordinated

execution of distributed Grid-enabled components combined
in a workflow. This workflow management system takes
advantage of the underlying Grid infrastructure and provides a
flexible high-level rapid prototyping environment. WS-VLAM
consists of a workflow engine that resides within a Globus
Toolkit 4 container on a server side and a workflow editor on
a client side. A graphical representation of a workflow is
created in the workflow editor (1) and forwarded to the engine
to be scheduled and executed on the Grid (Figure 4). The
engine consists of two WSRF [12] services: the Resource
Manager (RM) and the Run-Time System Manager (RTSM).
The Resource Manager is responsible for discovery, selection
and location of resources to be used by a submitted workflow.
The Run-Time System Manager performs the execution and
monitoring of running workflows (2). In WS-VLAM all
distributed application are represented as a workflow in the
form of a data driven Direct Acyclic Graph where each node
represents an application or a service on the Grid. The WS-
VLAM workflow is data-driven; workflow components are
connected to each other with data pipes in a peer-to-peer

Figure 3. The components of a general programmable network architecture.

Figure 4. The architecture to control network resources as software objects in
WS-VLAM.

WF Editor WF Engine

WF

Grid Broker Grid Broker 1
 - CPU
 - Storage

Grid 1
Grid n

NE

NE
AC

WS-VLAM

APP

RTSM

RM 1

3

2

Grid Broker Net Broker 4

Profiler

NE
AC

WS-VLAM

APP

NOS

Application
NC

NE
AC

NE
AC

NE
AC

 NC

 4

manner via input/output ports. When new data arrives to an
input port of a workflow component the data are processed by
application logic and the result is transferred further via an
output port.

Workflow components can be either developed using WS-
VLAM library API or can be created by wrapping existing
‘legacy’ applications into a container. When an application is
wrapped the workflow system takes care of state updates and
provides an execution environment that allows the
manipulation of various aspects of the application.

Workflow components are able to communicate by data
streams with each other, with the workflow management
system, at run-time with users by means of parameter
interface. Each workflow component can have a number of
parameters that can be set by a user of workflow management
system to control the execution or by the component itself to
signal or report some state. For example, the parameter
interface can be used by a workflow component to request
additional resources like a higher-speed network connection
from the workflow management system. The initial WS-
VLAM design implied the selection and control of
computation resources only – what is typically provided by
Grid middleware.

B. The Network Operating System and Integration of the
Network with WS-VLAM
Because network details are not relevant to most

applications, network only expose end-to-end transport
services. Exposing control over network services from the
application domain enables WMS and applications to develop
and manage application-specific services. However, it also
imposes complex provisioning issues to the application
domain. To address network related provisioning, we
introduce a Network Operating System (NOS), which acts as a
single point of access to the WMS and hides network-specific
complexities, such as provisioning of network elements in a
consistent manner. The role of the NOS is to:

1. Manage user/application access to network resources
(e.g. authentication, allocation, release),

2. Ensure fair usage (e.g. resource budgets, prioritization,
scheduling),

3. Prevent errors in network resource allocation (e.g.
creating paths between not connected nodes, exception
handling).

The NOS communicates with clients through dedicated
control connections. On start-up, the NOS clients register
itself to the NOS. The AC subsystem in NOS clients uses
Streamline [8-10] to load an application-specific network
service. We limit ourselves to the manipulation of routes, but
Streamline enables the implementation and dynamic
reconfiguration of complete routing protocols. The NOS is the
entry-point for coordinated access and control of network
services. On behalf of the application, it loads or modifies
Streamline modules on the NEs. The NOS builds and
maintains a network model by executing a discovery
mechanism at Ethernet level through which it collects all the
neighbours of connected clients.

1) Defining an Application-specific Network Service
A chain of packet processing modules (Figure 5) defines

which packets are filtered and which the network behavior is
applied. A number of such chains loaded on several NEs
define an application-specific network service. In order to
provision a network service, which may be as simple as a
static path for a source and destination of the application, each
chain needs to be provisioned. The NOS uses a distributed
transaction monitor to execute the provisioning. When a load
or modification of a NE fails, it rolls back the manipulations
of all the NEs to keep the network in a consistent state. The
NOS assigns each network service a protocol independent
token, which is stored in the IPv4 option field. The token is
used to authenticate and filter each packet according to the
provisioned packet processing chains. This way, tokens
associate network services with the traffic in which they are
embedded.

2) Network Control from WS-VLAM
A Network Broker (NB) (4) encapsulates the NOS to

provide the same function as grid brokers (3), i.e. capabilities
to query, request and load network services (Figure 4).
Because the resulting interface is similar to Grid brokers, it is
straightforward to extend the WMS with an additional service
to include discovery, allocation and provisioning of network
resources and services via the NB.

The flexibility of network connectivity in application and
workflow components depends on the usage of the WS-
VLAM libraries. If the WS-VLAM API is used, WS-VLAM
automatically handles establishment of connections and other
technical Grid issues and provides the application developer
the resulting data pipes created to its peer (e.g. in the form of
C++ or Java IO stream). In WS-VLAM, network connections
are implemented with Globus sockets and utilize only TCP
(Figure 6). If (legacy) applications are wrapped in WS-VLAM
however, connection handling remains the responsibility of
the application. Although WS-VLAM does not control such

(netfilter_fetch_in) \
>(fpl_tbs,expression="TOKEN") \
>(fpl_ipdest,expression="DST_IP") \
>(skb_transmit)

Figure 5. A Streamline request in which packets are taken from the Linux
Netfilter [13] hook, then filtered by token and the IP destination overwritten.

Figure 6. Connection handling for WS-VLAM workflow components.

 5

connections directly, it does provide applications the means to
control network services. In this case, UDP and other
protocols can also be supported.

The network broker receives requests from the WS-VLAM
engine via the profiler (see Figure 4). On successful execution
of the request, the network broker returns a token to WS-
VLAM that associates the network service with the request.
WS-VLAM then attaches the token to the data sent by the
application. On its turn, the NOS can identify the token (in the
IPv4 packet) and apply the associated network service.
However, the node on which the application runs has to attach
the tokens to the packets. When the API is used, WS-VLAM
provides tokenization of application traffic. When the
application cannot use the API calls, because the source code
cannot be modified for example, WS-VLAM will use socket
interposing mechanisms [14] to tokenize the traffic.

IV. EXPERIMENTS AND RESULTS
We developed a test bed and performed a series of

experiments to evaluate the proof of concept and the
feasibility of our approach. The experiments concentrate on
critical aspects of the proof of concept in various application
scenarios. We look in special at scenarios in which the
network has to be controlled at run-time, i.e. a continuous loop
of monitoring and adaptation to achieve or stay in an optimal
configuration. Reservation-time scheduling of network
services is trivial; the network is setup just before execution
using the same mechanisms. We illustrate the basic steps of
resource reservation, allocation and execution of an
application in two cases. In one case, the network needs
complete reconfiguration, because the data sources change. In
the second case, the application requests better connectivity
parameters. First, however, we provide a summary of our
experimental test bed.

A. Experimental test bed and performance of
programmable nodes
All the nodes in the test bed run Globus Toolkit 4 and also

the programmable network software (Streamline) at kernel
level. The network broker and WS-VLAM run on separate
machines over a control network. Figure 7 shows our test bed
in which nodes are interconnected through two networks, as
follows: the default network uses a shared 100Mbit switch and
the second network uses an IDXP2850 network processor unit
programmed to route IP packets at 1Gbps.

TABLE 1 shows the overhead introduced by our packet
manipulation components in Streamline within the kernel of
each node. We used IPerf to exchange TCP and UDP traffic

between two nodes (over 1Gbps network) in both cases: with
and without Streamline. With Streamline, the jitter is larger
and the total throughput is lower than without Streamline.
However, this overhead is acceptable for our experiments.

B. Run-time request of new data sources scenario
This scenario illustrates how Grid applications can

manipulate network services from WS-VLAM. Although
changing paths may involve both computational and
networking resources, when a new aggregation point needs to
be chosen for example, for simplicity we look only into the
networking resource brokerage.

Sensor networks and Grids are different systems in reality,
but here we assume that a sensor network can provide a Grid
service, which can be wrapped as workflow component. We
implemented a sensor workflow component in WS-VLAM,
which generates random UDP data using IPerf. The workflow
component is used to simulate a realistic scenario in which the
application needs to switch to a different data source, such as a
radio telescope, for example, to continue running.

In this experiment, two WS-VLAM workflow components
(W1 and W2) are re-directed to a single consumer (R) by an
application that processes the data (Figure 7). When the
application chooses to request the data of a different sensor,
WS-VLAM requests NOS to release the current resources to
(W1) and to set up a new path from node (W2) to (R). To make
a clear distinction between W1 and W2, IPerf was used to
generate data with a bandwidth of 10Mbit for W1 and 30 Mbit
for W2, which enabled us to visually verify switching from
data sources.

In our current implementation completing a switch from W1
to W2 takes less than three seconds. The mechanisms to load
the new behaviour on the network elements, such as a two-
phase commit protocol, introduce this delay. In the worst case,
a node that does not reply for any reason causes the commit
process to wait for the time-out until failure. In the future, we
expect to improve the performance of reconfiguring network
elements.

C. Run-time request of better connectivity scenario
Figure 9 shows a screenshot from the workflow manager

with multiple workflows. The workflow manager starts

Figure 7. Test bed setup and programmed routes in the first experiment. The
network broker accesses the nodes over a separate control plane.

TABLE 1
PACKET MANIPULATION PERFORMANCE

 Throughput (Mbps) Jitter (ms)
Streamline
TCP
UDP

317
509

0.026
Non-streamline
TCP
UDP

442
798

0.009

 6

workflows one by one: 1, 2, 3, 4. When the network
performance (throughput) measured by an application
decreases below a certain threshold, the application will
request better connectivity from WS-VLAM. WS-VLAM will
then offload the resources of the requesting application from
the 192.168.1.x network onto the 10.10.0.x network (e.g. path
4 moves to the 1Gbps network), yielding improved
performance.

The performance of the experimental application on the test
bed is illustrated in Figure 8. Due to the shared 100Mbps, the
per-path performance decreases while more paths are
established and exchange data traffic at maximum. The switch
offers one single network service: best effort. The application
running in the workflow (bwMeter in Figure 9) measures the
throughput and when it reaches a programmable threshold, it
requests more resources for the current configuration to WS-
VLAM. Next, NOS receives a demand for better paths and
decides to create alternative paths over 1Gbps network.
Consequently, we see that the throughput increases (bwMeter
in the second part of Figure 8).

Figure 11 illustrates automatic switching of network paths
according to application requests. First, the application is
started on a network that provides the throughput of 12 MB/s
(section A in Figure 11). Later another application starts using
the same network link which results in decreased network
performance of the current application (section B). At some
point application needs to temporarily increase the throughput
and acquire more bandwidth (e.g. for a scheduled bulk data
transfer). This happens in the section C: the application
switches itself to use another faster network. After the needed
data transfer action has been performed the path on the fast
network can be released and the initial network is used again
(section D).

V. DISCUSSION
The experiments with our proof of concept show the

feasibility of network control from Grid workflow
management system. Traditionally, applications only deal with
end-to-end transport services in the network. Our approach
changes the way applications can deal with network details.
Amongst other things, we need to investigate programming

models to develop network services and determine the
scalability of our approach. While the proof of concept only
supported path manipulation, in the future we plan take full
advantage of Streamline to develop complex application-
specific routing protocols. Because this is our first attempt,
however, many issues still remain.

We experienced the most difficulties in supporting
application-specific UDP and TCP traffic manipulation for
legacy applications. While supporting UDP is straightforward,
supporting TCP is difficult because of the many complex
mechanisms that are part of the protocol. Therefore, the
behaviour of the protocol has to be understood (and in some
cases worked around) while implementing application-specific
services.

We noticed that when using the IXDP2850 network
processor the jitter increases significantly in the TCP flows.
This might be caused by side effects of the code, which
processes and rewrites the IP packets. In general, jitter is
caused when application-specific code is executed and could
be improved taking into account the multi-core architectures.
Although decreased throughput is partly caused by the
programmable network, a significant performance gain is
expected when more efficient mechanisms to capture traffic
are implemented.

Our approach to match and schedule the network after the
Grid broker allocated the computing nodes sufficed in our

Figure 8. Experimental evaluation of test bed (bw in MB/s and t in seconds).

Figure 9. Screenshot of the workflow editor, which shows WS-VLAM
workflow where multiple producers (dataGen module) and consumers
(bwMeter) are connected.

Figure 10. Bandwidth measurements while the application automatically
controls throughput.

 7

proof of concept, but might be inefficient in larger systems.
Moreover, when an application requests new computational
resources, network resources need to be rescheduled. Better
approaches need to be developed and evaluated in real Grid
environments.

In this paper, we have not addressed the issues of managing
resources over multiple domains. As with grid brokers, we
believe that every network can have its own network broker
and NOS. But, to effectively reserve, load and connect
network services to applications over multiple network
brokers remains a challenge. At least at the network level,
tokens in IP packet could be used for multi-domain
authentication and for associating traffic to applications.
Although technically feasible, the biggest hurdle is expected to
be the administrative efforts to allow network resource
reservation and control to span over multiple domains.

VI. RELATED WORK
Coordinated configuration of Grid and network resources is

difficult in practice [15]. The effort can be justified in large e-
Science applications, however, because it might be easier to
run experiments over multiple Grids rather than claiming a
large portion of resources in one Grid. But, to achieve
acceptable performance over multiple Grids, communication
links between nodes the Grids should be optimized. In most
cases, this means configuring dedicated communication paths
between the Grids. Progress in grid network research can be
characterized by this goal.

Some attempts have been made to incorporate network
resource orchestration into workflow management systems.
WINNER (Workflow Integrated Network Resource
Orchestration) from Nortel Network Labs [16] proposed a way
to integrate network resources with WS workflows; DRAC
[17] network services are leveraged here for allocation and
information in network resource orchestration. However, this
project was mostly oriented to business workflows and seems
to be not maintained at the moment. In the scope of scientific
Grid workflow management systems we are not aware of
initiatives to integrate network as a fully featured manageable
resource on the workflow and application level.

Several Grid projects attempt to extend control over
network resources into the Grid toolset. So far, the efforts
focused on reservation, traffic engineering of network circuits
and improving the performance of network protocols [18-23],
but did not expose the new capabilities to workflow
management tools where they can be easily accessed and used
by applications and end-users.

In our architecture, we have looked at the virtualization of
programmable network elements as software objects in
workflow management systems. We believe that (1) a
workflow management system is the right place to control and
manage networks and interface with applications and (2)
programmable network technologies are sufficiently well
understood to be applied in Grid networks of the future. For
example, the next generation of the DAS-4 [24] super
computer will include FPGAs in the network fabric. To

support our approach in current grid networks, though with the
flexibility offered by existing network technologies, we need
to take advantage of the progress made in Grid networks.
Here, we summarize some of the state-of-the-art Grid
networks.

The G-Lambda project successfully conducted the first
experiments on coordinated scheduling of network and Grid
resources [20, 25]. In G-Lambda’s approach, users submit a
job to a global Grid resource scheduler, which on its turn
allocates resources by negotiating with individual
computational and network resource managers. G-Lambda
focuses on provisioning optical light-paths between Grids,
using MPLS for path provisioning.

UltraLight aims to provide a dynamically configurable
network to support high-performance, distributed data-
processing application for the high-energy physics community
[19]. In their approach, the network is considered a resource
and is closely monitored. In addition, the system can take
advantage of monitoring information about network state to
optimize network resource usage.

The e-Toile project introduces active networks into the Grid
domain [26]. By doing so, they go further than end-to-end
path reservation and also allow applications to inject code into
the network. Their active networks framework TAMANOIR
[27] places active nodes at the edges of Grid networks, which
can be a platform for adding new and innovative network
services.

In non-Grid related network research, other efforts propose
to make the management layer programmable [28, 29]. In this
approach, computer programs define policies and network
services and control switches and routers that implement flow
routing. Such an approach fits well with our goals, because
they support application-specific network services and are
backwards compatible with current network technologies.

VII. CONCLUSION AND FUTURE WORK
Network performance is crucial to a class of communication

intensive applications loosely defined under the term Sensor
Grids. Such applications may run in Grids, because it is too
costly or unfeasible to develop dedicated systems.
Unfortunately, despite the advanced management of
computational and storage resources, Grids lack network
resource management. To support communication intensive
applications or applications with specific network demands in
Grids, we introduced a novel architecture. In this architecture,
network elements are virtualized as software objects in the
application domain and managed by a Grid workflow
management system. Moreover, we have built a proof of
concept using an existing workflow management system (WS-
VLAM) and performed a series of experiments to demonstrate
the feasibility of our approach.

Some Sensor Grid applications require immediate access to
large amount of resources and control over networks triggered
by an event. For example, dangerous water levels detected at
dike may result in a large-scale simulation for risk assessment.
We have not yet implemented dynamic reservation of shared

 8

network resources for urgent computing. Although, we can
extend WS-VLAM and the network manager to support
application priorities, such a feature also needs to be supported
by Grid brokers.

While we believe the presented work is a promising
approach to support communication intensive applications and
to build Sensor Grids, it also raises questions about scalability
and security. How can Grid applications control potentially
tens of thousands of nodes? Can we use Grid workflow
managers to automate parts of the implementation we did by
hand? What are the implications for network management and
the risks to network operators? In other words, to develop and
evaluate practical implementation of the network as a resource
in Grids is a topic for further research.

REFERENCES
[1] R. J. Meijer and A. R. Koelewijn, "The Development of an Early

Warning System for Dike Failures," in 1st International
Conference and Exhibition on WATERSIDE SECURITY
Copenhagen, Denmark, 2008.

[2] N. Kruithof, "E -Vlbi Using a Software Correlator," in Grid
Enabled Remote Instrumentation, 2009, pp. 537-544.

[3] "CERN". [Online]. Available: http://public.web.cern.ch/public/
[Accessed: 11 November, 2009].

[4] H. Lim, et al., "Sensor grid: integration of wireless sensor
networks and the grid," in Local Computer Networks, 2005. 30th
Anniversary. The IEEE Conference on, 2005, pp. 91-99.

[5] E. Rosen, A. Viswanathan, and R. Callon, "Multiprotocol Label
Switching Architecture," RFC3031, January 2001.

[6] V. Korkhov, D. Vasyunin, A. Wibisono, V. Guevara-Masis, and A.
Belloum, "WS-VLAM: Towards a Scalable Workflow System on
the Grid " in Workshop on workflows in Support of Large-Scale
Science (WORKS 07) In conjunction with HPDC 2007 Monterey
Bay, California, 2007.

[7] R. J. Meijer, R. J. Strijkers, L. Gommans, and C. de Laat, "User
Programmable Virtualized Networks," in Proceedings of IEEE
International Conference on e-Science and Grid Computing: IEEE
Computer Society, 2006.

[8] J. Elischer and A. Cobbs, "FreeBSD Netgraph pluggable network
stack". [Online]. Available: http://www.freebsd.org/ [Accessed: 10
August, 2009].

[9] H. Bos, W. d. Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis,
"FFPF: Fairly Fast Packet Filters," in OSDI, 2004.

[10] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, "The Click
modular router," SIGOPS Oper. Syst. Rev., vol. 33, pp. 217-231,
1999.

[11] I. Foster, "Globus Toolkit Version 4: Software for Service-
Oriented Systems," in Network and Parallel Computing, 2005, pp.
2-13.

[12] "OASIS Web Services Resource Framework (WSRF)". [Online].
Available: http://www.oasis-open.org/committees/wsrf/ [Accessed:
16 March, 2010].

[13] "Linux Netfilter". [Online]. Available: http://www.netfilter.org
[Accessed: 17 August, 2009].

[14] M. Cristea, et al., "Supporting Communities in Programmable
Networks: gTBN," in IFIP Integrated Management 2009 New
York 2009.

[15] S. P. Zwart, et al., "Simulating the universe on an intercontinental
grid of supercomputers," Submitted to IEEE Computer, 2009.

[16] P. Wang, I. Monga, S. Raghunath, F. Travostino, and T. Lavian,
"Workflow Integrated Network Resource Orchestration,"
presented at GlobusWorld, Boston, 2005.

[17] R. K. F. Travostino, T. Lavian, I. Monga, B. Schofield, , "Project
DRAC: Creating an application-aware network," Nortel Technical
Journal, February 2005.

[18] E. Grasa, G. Junyent, S. Figuerola, A. Lopez, and M. Savoie,
"UCLPv2: A network virtualization framework built on web
services," IEEE Communications Magazine, vol. 46, pp. 126-134,
Mar 2008.

[19] H. Newman, et al., "The UltraLight Project: The Network as an
Integrated and Managed Resource for Data-Intensive Science,"
Computing in Science and Engg., vol. 7, pp. 38-47, 2005.

[20] S. R. Thorpe, et al., "G-lambda and EnLIGHTened: wrapped in
middleware co-allocating compute and network resources across
Japan and the US," in Proceedings of the first international
conference on Networks for grid applications Lyon, France: ICST
(Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2007.

[21] F. Travostino, Grid Networks: Enabling Grids with Advanced
Communication Technology: Wiley, 2006.

[22] K. Yang, X. Guo, A. Galis, B. Yang, and D. Liu, "Towards
efficient resource on-demand in Grid Computing," SIGOPS Oper.
Syst. Rev., vol. 37, pp. 37-43, 2003.

[23] B. Berde, A. Chiosi, and D. Verchere, "Networks meet the
requirements of grid applications," Bell Labs Technical Journal,
vol. 14, pp. 173-184, 2009.

[24] H. E. Bal, "DAS-4: Prototyping Future Computing
Infrastructures". [Online]. Available:
http://www.nwo.nl/projecten.nsf/pages/2300154150_Eng
[Accessed: 16 March, 2010].

[25] A. Takefusa, et al., "G-lambda: Coordination of a Grid scheduler
and lambda path service over GMPLS," Future Generation
Computer Systems, vol. 22, pp. 868-875, 2006.

[26] A. Bassi, et al., "Active and logistical networking for grid
computing: the e-Toile architecture," Future Generation Computer
Systems, vol. 21, pp. 199-208, 2005.

[27] F. Bouhafs, et al., "Designing and evaluating an active grid
architecture," Future Generation Computer Systems, vol. 21, pp.
315-330, 2005.

[28] N. McKeown, et al., "OpenFlow: enabling innovation in campus
networks," SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69-74,
2008.

[29] M. Casado, et al., "Ethane: taking control of the enterprise,"
SIGCOMM Comput. Commun. Rev., vol. 37, pp. 1-12, 2007.

