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Abstract – Grid workflow management systems automate the 
orchestration of scientific applications with large computational 
and data processing needs, but lack control over network 
resources. Consequently, the management system cannot prevent 
multiple communication intensive applications to compete for 
network resources, which leads to unpredictable performance. 
Currently, the lack of control over network resources may 
prevent certain applications, i.e. applications that need high 
capacity and Quality of Service, to utilize Grids. Hence, such 
applications would use dedicated infrastructures. Because the 
costs to build dedicated infrastructures may far exceed the cost of 
using existing Grids, the Grid needs to support mechanisms to 
optimize the interworking between networks and applications. In 
this paper, we present the architecture and proof of concept to 
control network resources from Grid workflow management 
system and to manage network resources from workflow-enabled 
applications at run-time. Depending on the current network 
infrastructure capabilities or future advances, applications may 
employ existing QoS mechanisms or use application-specific ones 
to provide the desired network service. We believe that our 
approach leads to performance improvements in communication 
intensive applications and enables novel Grid applications, which 
require optimal interworking between networks and 
applications. 
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I. INTRODUCTION 
Grid workflow management systems enable smart 

utilization of computational resources in Grid environments by 
allowing scientists to plan, schedule and run complex 
application execution scenarios as part of their scientific 
experiments. Resource virtualization, i.e. resource as a service, 
is one of the basic design principles in Grid architecture to 
make the large amounts of resources manageable and easier to 
use by scientists. Because most Grid applications have large 
computational demands, the attention in Grid computing has 
predominantly been focused on effective and efficient sharing 
of computational resources. 
In recent years, many initiatives have emerged, in which 
researchers collect enormous amounts of data from the 
environment, such as dikes [1], the sky [2] or from scientific 
experiments, such as CERN’s LHC detector [3]. By using the 
Grid, a large amount of resources are at the disposal for such 

applications, which would otherwise be technically or 
financially unfeasible to achieve with dedicated systems. The 
term Sensor Grids [4] loosely defines these types of 
applications. 

Sensor Grid applications are difficult to realize from the 
network perspective, because they can only execute well, if 
the underlying network supports their communication 
demands. On one hand, applications such as e-VLBI, only 
need high-speed network connections at the time of an 
experiment, but the required link connectivity may change 
while the experiment progresses. On the other hand, an early 
warning system for dike failure might need to redirect sensor 
data to intermediate nodes in the network for filtering or 
aggregation before feeding it to computation nodes. Because 
sensors cannot know in advance to where the data needs to be 
sent, the network has to be configured on beforehand or 
adapted at run-time. Unfortunately, such behaviour is hard to 
achieve in current Grids, because networks do not expose their 
resources and services to the application domain. 

Here, we present the architecture and a proof of concept to 
control and manage existing network services, such as MPLS 
[5] or deploy application-specific ones from Grid workflow 
management systems. The novel idea of our approach is that 
network elements are virtualized as software objects in the 
application domain. The application programmer uses the 
programming interface of the software objects to implement a 
desired network service. At run-time the workflow 
management system deploys the application-specific network 
service on the network elements, which enables applications to 
control the network elements. Grid workflow management 
systems are a natural choice to implement these mechanisms, 
because they provide abstractions to consider networks as a 
collection of software objects and already provide similar 
functions to manage computational and storage resources. 
Therefore, it is straightforward to reuse and extend existing 
workflow management system with control over networks. To 
our knowledge, no architecture or framework is described in 
literature to control network resources from workflow 
management systems. 

The paper is organized as follows. In Section II, we 
introduce the problem domain, design issues and the basic 
framework. In Section III, we present a proof of concept using 
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WS-VLAM [6] workflow management system and in Section 
IV we present preliminary experiments and results to 
demonstrate the feasibility of network control from workflow 
management systems. Related work is presented in Section V, 
followed by discussion and future work in section VI. The 
paper concludes with Section VII. 

II. INTERWORKING BETWEEN SENSORS, NETWORKS 
AND GRIDS 

Typically a Sensor Grid application is composed of three 
main components: (1) sensor networks that monitor 
environmental properties, (2) computers that process sensor 
data and (3) an interconnection infrastructure that connects 
sensors to computational resources, either by using the 
Internet or dedicated networks. 

Depending on type of the observation (Figure 1), sensors 
(S) need to be distributed at specific locations (e.g. homes (2), 
cities (2, 3, 4) or in rural areas (5)). Depending on their 
situation, sensors are connected via: sensor-to-sensor network, 
wireless (6) or wired (7) dedicated network or the Internet. 
When connected to the Internet, applications only get best-
effort connectivity. In contrast, dedicated networks can 
support software plug-ins for application-specific data 
transformations, such as aggregation, filtering or pre-
processing of data streams or conversion of sensor network 
protocols into Internet or application-specific protocols. Such 
networks, or the Internet where necessary, connect sensors to 
supercomputers (8), storage (9) or management systems (10). 

Workflow management systems (WMS) provide a 
transparent and flexible way to compose and execute 
distributed applications on the Grid. An intuitive approach 
would be to use a WMS to orchestrate all the components of a 
Sensor Grid application, i.e. let the WMS care about execution 
of software components on distributed computational 
resources and the management of interdependencies and data 
transfers between these components. But Sensor Grid 
applications have specific demands that have to be addressed 
by WMS before an implementation is feasible. The most 
Sensor Grid demand is to reserve and control network 

resources to ensure that sufficient network capacity is 
available to transfer data to computational nodes. WMS 
already fulfil the task for computational and storage resources. 
What are the requirements to include network control? 

A. Combined Allocation of Network and Grid Resources 
The applications we are considering exhibit a strong 

sensitivity to their execution time; they are all connected with 
sensors, record and process real-life data at a given sampling 
rate. When a sensor produces data, it either has to be stored or 
processed immediately. Once a radio telescope turns on, for 
example, it is necessary to receive and process the data as it 
was transmitted. When this is not fulfilled for a moment, 
important events may be missed, wrong correlations may be 
made, and the whole experiment may fail. We consider such 
applications as time-critical. Time-critical applications need to 
have insurance that the environment is properly dimensioned 
at run-time. Because Grids can support reservation of 
resources on beforehand, Grids can provide this insurance. 
However, in order to support experiments that involve sensor 
networks, the interconnection networks, shared or dedicated, 
need to support resource reservation and control too.  

In the case where resources are not known on beforehand, 
for example when an application needs to switch to another 

data source at run-time, the resource manager has to provide a 
function to potentially override the reservations made by other 
applications, i.e. the system has to support rank ordering of the 
applications in order to decide which applications have 
priority above others (Figure 2). In addition, the network and 
computing resources need to be reconfigured on the fly to 
adapt to the new situation. Because only the application 
programmer knows how to organize the resources for the 
application, it needs mechanisms to manage computational 
resources as well as network resources. Therefore, the 
resource manager should be accessible through an application 
programming interface. 

In the Grid the exact locations of the Grid nodes are 
unknown at reservation time. Therefore, we need to match and 
reserve network resources after the Grid nodes are allocated. If 
the network cannot provide the required resources for the 
application, the computation nodes need to be rescheduled. 
This process involves coordinated interaction with Grid 
brokers and network managers and can be dealt with from a 
WMS. An additional benefit of using a WMS is that it can 
negotiate and determine the best Grid brokers to submit jobs 
to, based on statistics gathered from previous submissions. In 

 
Figure 1. Three major components form a large-scale observation system: 
sensors (1-5), computers (8-10) and interconnection networks (6, 7). 
 

 
Figure 2. Without reservation network services can conflict (1). Reservation 
guarantees resources to be available at run-time (2). In order to support 
dynamic reservation, a resource manager needs to be able to override other 
reservations when needed (3). 
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addition, WMS specialize in dynamic and advanced 
algorithms for matching, reserving and managing resources. 

B. The network as software object in Grid Applications 
Networks need to provide enough flexibility to support 

network reservation and management required by our class of 
Grid applications. In [7] we presented a concept in which 
network elements are virtualized as software objects in the 
application domain. Our concept regards individual Network 
Elements (NEs) as resources, which are exploited directly or 
through the Internet as software components in application 
programs. A NE component (NC) can be seen as a 
manifestation of the NE in the application, i.e. a virtualized 
NE. Consequently, all virtualized NEs together create a 
virtualized network, allowing interaction with user programs 
(Figure 3). To build application specific network services 
which involve packet processing, set particular parameters of 
the NE, and to facilitate other functions NEs may have in a 
network, NEs have the ability to deploy Application 
Components (ACs). ACs implement primitives to 
communicate with NEs and may employ existing network 
technologies or application specific ones [8-10]. 

The NE uses technologies, such as Web services, to expose 
interfaces on the Internet. Various applications can interact 
simultaneously with the NE through its interfaces, which are 
exposed as Grid services or as software objects in a WMS. As 
such, each application is capable to optimize the behaviour of 
the NE accordingly. During application development, NEs 
appear as objects (NC) in the development environment. 
During run-time, our model, as well as state of the art 
technology, allows dynamic extension of the set of NEs the 
applications interacts with.  

By virtualizing network elements as software objects in the 
application domain, it becomes possible to control networks 
using software. Hence, application domain software can be 
used to program and automate the behaviour and management 
of network services. 

III. IMPLEMENTATION 
We developed a proof of concept to gain insight in the 

technical challenges involved in the virtualization of network 
elements and network control from Grid workflows. For the 
implementation we reuse and extend existing Grid software, 
such as the Globus Toolkit 4 [11]. The implementation of the 
proof of concept consists of two parts, which later are 
integrated to one solution. 

The first part implements an extension of WS-VLAM 

scientific workflow management system with operations to 
reserve and control network resources. We integrate a 
programming interface of the virtualized network elements 
with the programming interface that WS-VLAM provides to 
Grid applications to manage computational resources. This 
adds network service management to Grid applications, which 
use the WS-VLAM application programming interface. 

The second part implements a Network Operating System 
(NOS), which acts as an access point to the network and its 
resources. In principle, the network management system can 
implement the task of the NOS. However, network 
management systems are designed towards the needs of 
network operators, while we are interested in the challenges to 
expose the network services to applications. Therefore, the 
NOS interface (Figure 4, 4) is modelled after Grid broker to 
facilitate the integration with Grid software. 

A. WS-VLAM Grid Workflow Management System 
WS-VLAM aims to provide and support coordinated 

execution of distributed Grid-enabled components combined 
in a workflow. This workflow management system takes 
advantage of the underlying Grid infrastructure and provides a 
flexible high-level rapid prototyping environment. WS-VLAM 
consists of a workflow engine that resides within a Globus 
Toolkit 4 container on a server side and a workflow editor on 
a client side. A graphical representation of a workflow is 
created in the workflow editor (1) and forwarded to the engine 
to be scheduled and executed on the Grid (Figure 4). The 
engine consists of two WSRF [12] services: the Resource 
Manager (RM) and the Run-Time System Manager (RTSM). 
The Resource Manager is responsible for discovery, selection 
and location of resources to be used by a submitted workflow. 
The Run-Time System Manager performs the execution and 
monitoring of running workflows (2).  In WS-VLAM all 
distributed application are represented as a workflow in the 
form of a data driven Direct Acyclic Graph where each node 
represents an application or a service on the Grid. The WS-
VLAM workflow is data-driven; workflow components are 
connected to each other with data pipes in a peer-to-peer 

 
Figure 3. The components of a general programmable network architecture. 

 

 
 

Figure 4. The architecture to control network resources as software objects in 
WS-VLAM.  
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manner via input/output ports. When new data arrives to an 
input port of a workflow component the data are processed by 
application logic and the result is transferred further via an 
output port.  

Workflow components can be either developed using WS-
VLAM library API or can be created by wrapping existing 
‘legacy’ applications into a container. When an application is 
wrapped the workflow system takes care of state updates and 
provides an execution environment that allows the 
manipulation of various aspects of the application.  

Workflow components are able to communicate by data 
streams with each other, with the workflow management 
system, at run-time with users by means of parameter 
interface. Each workflow component can have a number of 
parameters that can be set by a user of workflow management 
system to control the execution or by the component itself to 
signal or report some state. For example, the parameter 
interface can be used by a workflow component to request 
additional resources like a higher-speed network connection 
from the workflow management system. The initial WS-
VLAM design implied the selection and control of 
computation resources only – what is typically provided by 
Grid middleware. 

B. The Network Operating System and Integration of the 
Network with WS-VLAM  
Because network details are not relevant to most 

applications, network only expose end-to-end transport 
services. Exposing control over network services from the 
application domain enables WMS and applications to develop 
and manage application-specific services. However, it also 
imposes complex provisioning issues to the application 
domain. To address network related provisioning, we 
introduce a Network Operating System (NOS), which acts as a 
single point of access to the WMS and hides network-specific 
complexities, such as provisioning of network elements in a 
consistent manner. The role of the NOS is to: 

1. Manage user/application access to network resources 
(e.g. authentication, allocation, release), 

2. Ensure fair usage (e.g. resource budgets, prioritization, 
scheduling), 

3. Prevent errors in network resource allocation (e.g. 
creating paths between not connected nodes, exception 
handling).  

The NOS communicates with clients through dedicated 
control connections. On start-up, the NOS clients register 
itself to the NOS. The AC subsystem in NOS clients uses 
Streamline [8-10] to load an application-specific network 
service. We limit ourselves to the manipulation of routes, but 
Streamline enables the implementation and dynamic 
reconfiguration of complete routing protocols. The NOS is the 
entry-point for coordinated access and control of network 
services. On behalf of the application, it loads or modifies 
Streamline modules on the NEs. The NOS builds and 
maintains a network model by executing a discovery 
mechanism at Ethernet level through which it collects all the 
neighbours of connected clients. 

1) Defining an Application-specific Network Service 
A chain of packet processing modules (Figure 5) defines 

which packets are filtered and which the network behavior is 
applied. A number of such chains loaded on several NEs 
define an application-specific network service. In order to 
provision a network service, which may be as simple as a 
static path for a source and destination of the application, each 
chain needs to be provisioned. The NOS uses a distributed 
transaction monitor to execute the provisioning. When a load 
or modification of a NE fails, it rolls back the manipulations 
of all the NEs to keep the network in a consistent state. The 
NOS assigns each network service a protocol independent 
token, which is stored in the IPv4 option field. The token is 
used to authenticate and filter each packet according to the 
provisioned packet processing chains. This way, tokens 
associate network services with the traffic in which they are 
embedded.  

2) Network Control from WS-VLAM 
A Network Broker (NB) (4) encapsulates the NOS to 

provide the same function as grid brokers (3), i.e. capabilities 
to query, request and load network services (Figure 4). 
Because the resulting interface is similar to Grid brokers, it is 
straightforward to extend the WMS with an additional service 
to include discovery, allocation and provisioning of network 
resources and services via the NB. 

The flexibility of network connectivity in application and 
workflow components depends on the usage of the WS-
VLAM libraries. If the WS-VLAM API is used, WS-VLAM 
automatically handles establishment of connections and other 
technical Grid issues and provides the application developer 
the resulting data pipes created to its peer (e.g. in the form of 
C++ or Java IO stream). In WS-VLAM, network connections 
are implemented with Globus sockets and utilize only TCP 
(Figure 6). If (legacy) applications are wrapped in WS-VLAM 
however, connection handling remains the responsibility of 
the application. Although WS-VLAM does not control such 

(netfilter_fetch_in) \ 
>(fpl_tbs,expression="TOKEN") \ 
>(fpl_ipdest,expression="DST_IP") \ 
>(skb_transmit) 

 
Figure 5. A Streamline request in which packets are taken from the Linux 
Netfilter [13] hook, then filtered by token and the IP destination overwritten. 

 
Figure 6. Connection handling for WS-VLAM workflow components. 
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connections directly, it does provide applications the means to 
control network services. In this case, UDP and other 
protocols can also be supported. 

The network broker receives requests from the WS-VLAM 
engine via the profiler (see Figure 4). On successful execution 
of the request, the network broker returns a token to WS-
VLAM that associates the network service with the request. 
WS-VLAM then attaches the token to the data sent by the 
application. On its turn, the NOS can identify the token (in the 
IPv4 packet) and apply the associated network service. 
However, the node on which the application runs has to attach 
the tokens to the packets. When the API is used, WS-VLAM 
provides tokenization of application traffic. When the 
application cannot use the API calls, because the source code 
cannot be modified for example, WS-VLAM will use socket 
interposing mechanisms [14] to tokenize the traffic. 

IV. EXPERIMENTS AND RESULTS 
We developed a test bed and performed a series of 

experiments to evaluate the proof of concept and the 
feasibility of our approach. The experiments concentrate on 
critical aspects of the proof of concept in various application 
scenarios. We look in special at scenarios in which the 
network has to be controlled at run-time, i.e. a continuous loop 
of monitoring and adaptation to achieve or stay in an optimal 
configuration. Reservation-time scheduling of network 
services is trivial; the network is setup just before execution 
using the same mechanisms. We illustrate the basic steps of 
resource reservation, allocation and execution of an 
application in two cases. In one case, the network needs 
complete reconfiguration, because the data sources change. In 
the second case, the application requests better connectivity 
parameters.  First, however, we provide a summary of our 
experimental test bed. 

A. Experimental test bed and performance of 
programmable nodes 
All the nodes in the test bed run Globus Toolkit 4 and also 

the programmable network software (Streamline) at kernel 
level. The network broker and WS-VLAM run on separate 
machines over a control network. Figure 7 shows our test bed 
in which nodes are interconnected through two networks, as 
follows: the default network uses a shared 100Mbit switch and 
the second network uses an IDXP2850 network processor unit 
programmed to route IP packets at 1Gbps.  

TABLE 1 shows the overhead introduced by our packet 
manipulation components in Streamline within the kernel of 
each node. We used IPerf to exchange TCP and UDP traffic 

between two nodes (over 1Gbps network) in both cases: with 
and without Streamline. With Streamline, the jitter is larger 
and the total throughput is lower than without Streamline. 
However, this overhead is acceptable for our experiments. 

B. Run-time request of new data sources scenario 
This scenario illustrates how Grid applications can 

manipulate network services from WS-VLAM. Although 
changing paths may involve both computational and 
networking resources, when a new aggregation point needs to 
be chosen for example, for simplicity we look only into the 
networking resource brokerage. 

Sensor networks and Grids are different systems in reality, 
but here we assume that a sensor network can provide a Grid 
service, which can be wrapped as workflow component. We 
implemented a sensor workflow component in WS-VLAM, 
which generates random UDP data using IPerf. The workflow 
component is used to simulate a realistic scenario in which the 
application needs to switch to a different data source, such as a 
radio telescope, for example, to continue running.  

In this experiment, two WS-VLAM workflow components 
(W1 and W2) are re-directed to a single consumer (R) by an 
application that processes the data (Figure 7). When the 
application chooses to request the data of a different sensor, 
WS-VLAM requests NOS to release the current resources to 
(W1) and to set up a new path from node (W2) to (R). To make 
a clear distinction between W1 and W2, IPerf was used to 
generate data with a bandwidth of 10Mbit for W1 and 30 Mbit 
for W2, which enabled us to visually verify switching from 
data sources.  

In our current implementation completing a switch from W1 
to W2 takes less than three seconds. The mechanisms to load 
the new behaviour on the network elements, such as a two-
phase commit protocol, introduce this delay. In the worst case, 
a node that does not reply for any reason causes the commit 
process to wait for the time-out until failure. In the future, we 
expect to improve the performance of reconfiguring network 
elements. 

C. Run-time request of better connectivity scenario 
Figure 9 shows a screenshot from the workflow manager 

with multiple workflows. The workflow manager starts 

 
Figure 7. Test bed setup and programmed routes in the first experiment. The 
network broker accesses the nodes over a separate control plane.   
 
 

TABLE 1 
PACKET MANIPULATION PERFORMANCE 

 Throughput (Mbps) Jitter (ms) 
Streamline 
TCP 
UDP 

 
317 
509 

 
 

0.026 
Non-streamline 
TCP 
UDP 

 
442 
798 

 
 

0.009 
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workflows one by one: 1, 2, 3, 4. When the network 
performance (throughput) measured by an application 
decreases below a certain threshold, the application will 
request better connectivity from WS-VLAM. WS-VLAM will 
then offload the resources of the requesting application from 
the 192.168.1.x network onto the 10.10.0.x network (e.g. path 
4 moves to the 1Gbps network), yielding improved 
performance. 

The performance of the experimental application on the test 
bed is illustrated in Figure 8. Due to the shared 100Mbps, the 
per-path performance decreases while more paths are 
established and exchange data traffic at maximum. The switch 
offers one single network service: best effort. The application 
running in the workflow (bwMeter in Figure 9) measures the 
throughput and when it reaches a programmable threshold, it 
requests more resources for the current configuration to WS-
VLAM. Next, NOS receives a demand for better paths and 
decides to create alternative paths over 1Gbps network. 
Consequently, we see that the throughput increases (bwMeter 
in the second part of Figure 8).  

Figure 11 illustrates automatic switching of network paths 
according to application requests. First, the application is 
started on a network that provides the throughput of 12 MB/s 
(section A in Figure 11). Later another application starts using 
the same network link which results in decreased network 
performance of the current application (section B). At some 
point application needs to temporarily increase the throughput 
and acquire more bandwidth (e.g. for a scheduled bulk data 
transfer). This happens in the section C: the application 
switches itself to use another faster network. After the needed 
data transfer action has been performed the path on the fast 
network can be released and the initial network is used again 
(section D). 

V. DISCUSSION 
The experiments with our proof of concept show the 

feasibility of network control from Grid workflow 
management system. Traditionally, applications only deal with 
end-to-end transport services in the network. Our approach 
changes the way applications can deal with network details. 
Amongst other things, we need to investigate programming 

models to develop network services and determine the 
scalability of our approach. While the proof of concept only 
supported path manipulation, in the future we plan take full 
advantage of Streamline to develop complex application-
specific routing protocols. Because this is our first attempt, 
however, many issues still remain.  

We experienced the most difficulties in supporting 
application-specific UDP and TCP traffic manipulation for 
legacy applications. While supporting UDP is straightforward, 
supporting TCP is difficult because of the many complex 
mechanisms that are part of the protocol. Therefore, the 
behaviour of the protocol has to be understood (and in some 
cases worked around) while implementing application-specific 
services. 

We noticed that when using the IXDP2850 network 
processor the jitter increases significantly in the TCP flows. 
This might be caused by side effects of the code, which 
processes and rewrites the IP packets. In general, jitter is 
caused when application-specific code is executed and could 
be improved taking into account the multi-core architectures. 
Although decreased throughput is partly caused by the 
programmable network, a significant performance gain is 
expected when more efficient mechanisms to capture traffic 
are implemented.  

Our approach to match and schedule the network after the 
Grid broker allocated the computing nodes sufficed in our 

 
Figure 8. Experimental evaluation of test bed (bw in MB/s and t in seconds). 
 
 

 
Figure 9. Screenshot of the workflow editor, which shows WS-VLAM 
workflow where multiple producers (dataGen module) and consumers 
(bwMeter) are connected. 

 
Figure 10. Bandwidth measurements while the application automatically 
controls throughput. 
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proof of concept, but might be inefficient in larger systems. 
Moreover, when an application requests new computational 
resources, network resources need to be rescheduled. Better 
approaches need to be developed and evaluated in real Grid 
environments. 

In this paper, we have not addressed the issues of managing 
resources over multiple domains. As with grid brokers, we 
believe that every network can have its own network broker 
and NOS. But, to effectively reserve, load and connect 
network services to applications over multiple network 
brokers remains a challenge. At least at the network level, 
tokens in IP packet could be used for multi-domain 
authentication and for associating traffic to applications. 
Although technically feasible, the biggest hurdle is expected to 
be the administrative efforts to allow network resource 
reservation and control to span over multiple domains. 

VI. RELATED WORK 
Coordinated configuration of Grid and network resources is 

difficult in practice [15]. The effort can be justified in large e-
Science applications, however, because it might be easier to 
run experiments over multiple Grids rather than claiming a 
large portion of resources in one Grid. But, to achieve 
acceptable performance over multiple Grids, communication 
links between nodes the Grids should be optimized. In most 
cases, this means configuring dedicated communication paths 
between the Grids. Progress in grid network research can be 
characterized by this goal. 

Some attempts have been made to incorporate network 
resource orchestration into workflow management systems. 
WINNER (Workflow Integrated Network Resource 
Orchestration) from Nortel Network Labs [16] proposed a way 
to integrate network resources with WS workflows; DRAC 
[17] network services are leveraged here for allocation and 
information in network resource orchestration. However, this 
project was mostly oriented to business workflows and seems 
to be not maintained at the moment. In the scope of scientific 
Grid workflow management systems we are not aware of 
initiatives to integrate network as a fully featured manageable 
resource on the workflow and application level. 

Several Grid projects attempt to extend control over 
network resources into the Grid toolset. So far, the efforts 
focused on reservation, traffic engineering of network circuits 
and improving the performance of network protocols [18-23], 
but did not expose the new capabilities to workflow 
management tools where they can be easily accessed and used 
by applications and end-users. 

In our architecture, we have looked at the virtualization of 
programmable network elements as software objects in 
workflow management systems. We believe that (1) a 
workflow management system is the right place to control and 
manage networks and interface with applications and (2) 
programmable network technologies are sufficiently well 
understood to be applied in Grid networks of the future. For 
example, the next generation of the DAS-4 [24] super 
computer will include FPGAs in the network fabric. To 

support our approach in current grid networks, though with the 
flexibility offered by existing network technologies, we need 
to take advantage of the progress made in Grid networks. 
Here, we summarize some of the state-of-the-art Grid 
networks. 

The G-Lambda project successfully conducted the first 
experiments on coordinated scheduling of network and Grid 
resources [20, 25]. In G-Lambda’s approach, users submit a 
job to a global Grid resource scheduler, which on its turn 
allocates resources by negotiating with individual 
computational and network resource managers. G-Lambda 
focuses on provisioning optical light-paths between Grids, 
using MPLS for path provisioning. 

UltraLight aims to provide a dynamically configurable 
network to support high-performance, distributed data-
processing application for the high-energy physics community 
[19]. In their approach, the network is considered a resource 
and is closely monitored. In addition, the system can take 
advantage of monitoring information about network state to 
optimize network resource usage. 

The e-Toile project introduces active networks into the Grid 
domain [26]. By doing so, they go further than end-to-end 
path reservation and also allow applications to inject code into 
the network. Their active networks framework TAMANOIR 
[27] places active nodes at the edges of Grid networks, which 
can be a platform for adding new and innovative network 
services.  

In non-Grid related network research, other efforts propose 
to make the management layer programmable [28, 29]. In this 
approach, computer programs define policies and network 
services and control switches and routers that implement flow 
routing. Such an approach fits well with our goals, because 
they support application-specific network services and are 
backwards compatible with current network technologies. 

VII. CONCLUSION AND FUTURE WORK 
Network performance is crucial to a class of communication 

intensive applications loosely defined under the term Sensor 
Grids. Such applications may run in Grids, because it is too 
costly or unfeasible to develop dedicated systems. 
Unfortunately, despite the advanced management of 
computational and storage resources, Grids lack network 
resource management. To support communication intensive 
applications or applications with specific network demands in 
Grids, we introduced a novel architecture. In this architecture, 
network elements are virtualized as software objects in the 
application domain and managed by a Grid workflow 
management system. Moreover, we have built a proof of 
concept using an existing workflow management system (WS-
VLAM) and performed a series of experiments to demonstrate 
the feasibility of our approach.  

Some Sensor Grid applications require immediate access to 
large amount of resources and control over networks triggered 
by an event. For example, dangerous water levels detected at 
dike may result in a large-scale simulation for risk assessment. 
We have not yet implemented dynamic reservation of shared 
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network resources for urgent computing. Although, we can 
extend WS-VLAM and the network manager to support 
application priorities, such a feature also needs to be supported 
by Grid brokers. 

While we believe the presented work is a promising 
approach to support communication intensive applications and 
to build Sensor Grids, it also raises questions about scalability 
and security. How can Grid applications control potentially 
tens of thousands of nodes? Can we use Grid workflow 
managers to automate parts of the implementation we did by 
hand? What are the implications for network management and 
the risks to network operators? In other words, to develop and 
evaluate practical implementation of the network as a resource 
in Grids is a topic for further research. 
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