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Abstract—This paper deals with the fault detection of 
centrifugal pumps, based on measured radial vibrations. The 
detection method compares the vibration signature of the 
equipment during normal behavior with the current recorded 
vibration signal. It raises an alarm if a distance function of the 
resulted residuum exceeds a predefined threshold. The normal 
signature and the threshold are learned through a machine 
learning procedure, based on autoencoding neural networks 
(NN). Two versions of NNs are trained and evaluated. The 
detection method proved to be reliable in an industrial 
application, even when using a single low-cost accelerometer for 
vibration sensing. 
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I. INTRODUCTION  
The problem of fault detection of rotating machinery is a 

critical subject in industry, as it involves a large part of the 
equipment. Early fault detection (or abnormal behavior) has 
a high economic impact, besides the other objectives: fault 
isolation, wear estimation or remaining time to failure. 
Hence, this subject continues to keep the attention of many 
research groups, who equally produced the theoretical 
background and the experimental proofs for the appropriate 
detection methods. However, the operational conditions and 
requirements are very diverse, so there is no universal 
detection method to be used in all cases. The interest area of 
this paper concerns the monitoring of rotating machinery, 
driven by asynchronous motors. More specific, groups of 
centrifugal pumps, monitored by vibration sensors, which 
provide relevant information about the status of the 
equipment. Such equipment are largely used and their failure 
can have a significant impact in costs. 

The technical literature is very rich, spanning from very 
general detection and isolation methods up to details of 
frequently used equipment. Popescu et al. presented a 
general view of the problems and challenges of vibration 
analysis, in the context of change detection ([1]). They also 
introduced a collection of dedicated analysis functions for 
change detection and segmentation, based on classical 
methods: frequency and time-frequency analysis, blind 
source separation, Renyi entropy etc. A useful stage for 
detection of abnormal behavior, the signature analysis ([1]), 
was adopted for the present work. The use of Blind Source 
Separation, as a preliminary stage of change detection is 
analyzed in [2]. It is appropriate wherever more signal 
sources exist (including disturbances), even if their statistical 
properties are similar. Unfortunately, it requires at least as 
many sensors as signal sources and it does not help if the 
signals are not stationary. For instance, 7 sensors monitor the 
same pump, as reported in [2]. Other authors make use of 
continuous wavelet transform or bispectral analysis, as 

preliminary signal processing stages, for monitoring bearings 
and pumps (respectively in [3], [4]). 

Most of the presented methods aim at extracting of signal 
features for fault detection, but also for fault isolation. For 
this objective, the applied methods have to consider a 
multiple class problem. Usually, the faults belong to classes 
such as: bearing fault, misalignment of the cinematic axis, 
unbalanced rotational part, cavitation, electronic converter 
fault, etc. As correctly noticed by Muniz et al. in [5], the 
initial information about the supervised equipment must 
contain data about the behavior in all the situations that have 
to be recognized. This is not always a simple task, as the data 
mainly depends on the particular setup of the plant. It 
requires to perform in situ data recording (or on a test rig), 
while intentionally producing the respective faults. It also 
requires a large amount of data, for all faults that have to be 
recognized, and a human tedious effort to label the recorded 
data. In addition, models of the supervised equipment and of 
the possible disturbances are necessary, if these ones have a 
significant impact. In our approach, we address the problem 
of detection of an abnormal behavior because the owner of 
the plant who wants to benefit from the presented work is 
satisfied with the detection of the deviations from the normal 
pump signature. Both supervised and unsupervised learning 
methods are appropriate. However, the unsupervised, data-
driven methods become more attractive, in the context of 
large computing resources, available even in small form 
factor devices, such as single board computers. For instance, 
in [5] a one dimensional convolutional neural network (NN) 
is proposed, for fault detection, in a data-driven learning 
procedure. There is no need of previous feature extraction, as 
these ones will implicitly result within the trained network. 
The input data of the NN are the spectra of vibration and 
motor current signals. One could object to the lack of human 
accessible explanation for the NN behavior, but this is a 
reasonable price to pay for a simple unsupervised learning 
procedure. 

Many other papers present solutions from the same 
family of machine learning, adapted to the particular 
technical problem. Simple feedforward NNs, with 1 or 2 
hidden layers can process the extracted features, from 
vibration signals, for cavitation detection, gearbox 
monitoring or operational regime monitoring ([6], [7], [8]). 
More complex solutions, based on convolutional or deep 
belief convolutional NNs, with 20 or more layers are 
presented in [4], [9], [10]. They use high dimensional NNs, 
such as AlexNet, GoogleNet and similar, to analyze the 
vibration spectral signatures of the electric motors and 
bearings, respectively. A distinct approach, based on 
signature analysis, uses NNs for compression, in order to 
keep only the useful features of the analyzed spectra. The 
idea appeared early in 1991 ([11]), the objective was 



cauterization. It was not exploited, for a while, in fault 
detection context, but it now reveals its potential. Recent 
papers, such as [12], [13], report the use of the autoencoding 
function (compression + decompression) for the diagnosis. A 
NN is trained to compress, then decompress the signals in the 
training set, which contains only “normal” records. The 
output signal will be very close to the input one, as long as it 
is not affected by faults. On the contrary, an outlier is simply 
detected, based on a convenient chosen distance function. 
Training is unsupervised, as it eliminates the need of 
explicitly feature extraction. Some details require further 
research, such as a systematic method to determine the 
optimal compression ratio. The authors of [12] reported that 
an issue of the autoencoding method is the lack of 
compression, while the NN simply copies the input to the 
output. They claim having solved it by adding gaussian 
noise. This issue is probably insignificant when the 
compression ratio is 3/1 or higher. The signatures analyzed 
in the cited papers are the spectrum of the original signal or a 
vector of features, chosen by the human expert. In this paper, 
the input vector, analyzed by the NN is the vibration 
spectrum, allowing minimum preprocessing and 
unsupervised training. It contains the main information about 
the behavior of the rotating machinery, although the signal 
envelope is sometimes relevant (mainly for the bearings, 
[14]).  

This paper deals with the detection of abnormal behavior 
of centrifugal pumps, using the vibration signals. It continues 
by presenting the physical equipment (section II), the 
methods used to detect the faults (section III) and the 
experimental results (section IV). The last section concludes 
the paper.  

II.  THE EQUIPMENT 
As presented above, the objective of this work is the 

early detection of abnormal behavior of centrifugal pumps, 
using vibration data. The plant contains 11 pairs of pumps, 
each pump driven by an asynchronous motor, 18.5kW, 
working at 3000 rpm. Every pair of motors is fed by its own 
AC/AC converter. The possible causes of abnormal behavior 
are: motor faults, bearing faults, unbalanced pump rotor, 
cavitation, misalignment of the mechanical transmission, 
clogged pipes, converter fault. Even an intentional or 
unintentional change of the rotational speed should be 
detected, as the client requires a constant value of 
3000rot/min, in the permanent regime. The maintenance 
team needs an alert to be raised, if any of these causes 
occurs. For this purpose, a network of vibration sensors was 
attached to the pumps. Each sensor is connected to a 
microcontroller, then to a single board computer, belonging 
to the Raspberry family. The data are then collected and 
remotely transmitted through the communication system. 

The amplitude, the accuracy and the band of the 
measured vibrations are essential for the collected 
information. The work of other groups concerns expensive 
accelerometers (such as in [6], [12], [15], [16]) or cheap ones 
(such as in [7], [8], [10]). Having in mind that the noise is 
usually high, in this environment, and the low values of the 
acceleration are not relevant, any sensor providing accurate 
10-bit or higher resolution is enough. The sampling 
frequency used in the cited papers spans from 5kHz ([5]), to 
10kHz ([6], [10], [16]) or to 96kHz ([14]). The chosen 
sampling frequency is closely related to the distribution of 
information in the vibration spectrum. In this case, the 

vibration sources are the motor (fundamental frequency at 
50Hz), the pump (fundamental frequency at 50Hz), the 
mechanical coupling (fundamental frequencies at 50Hz, 
100Hz) and the bearings (fundamental frequencies at 50Hz, 
275Hz, 550Hz, as they contain 11 balls). The switching 
frequency of the AC/AC converter (4kHz) does not 
significantly influence the spectrum of the recorded 
vibrations. For these components, a band of 2kHz is 
sufficient. Accordingly, the sampling frequency was chosen 
to 4kHz, and the anti-alias filter set to 2kHz. There was no a 
priori data about the amplitude, but the maximum 
experimentally observed value of 4g (i.e. four times the 
gravitational acceleration) proved to be enough.  

The mentioned parameters are satisfied by many 
unexpensive accelerometers. The experiments were carried 
on using ADXL355 and IIS3DWB parts (see ADXL in Fig. 
1). Both are 3-axis MEMS, with digital output. Although the 
latter can be sampled at 26kHz, the sampling frequency was 
kept to 4kHz, as stated above. 

Finally, the length of the recorded sequence had to be 
chosen, provided that the vibration signal is not stationary. 
Most of the values reported by other groups stay within the 
interval 0.1s ([10], [16]) to 3s ([12]). In this application, a 1 s 
length proved to be a good choice (meaning 4000 samples). 
These sequences can be collected at any time, including the 
continuous recording. An interval of 30 s to 5 minutes 
between the recorded sequences satisfies the requirements of 
the user. 

 
Fig. 1. The ADXL355 accelerometer and the microcontroller 

The accelerometers provide 3-axis measurements. For 
this preliminary work, only the y axis was analyzed (i.e., 
radial acceleration). However, the two other axes provide 
information to be exploited in the future work. Other 
measured variables, such as pressure, motor current, 
temperature etc. were not considered in our research. 

III. THE DETECTION METHODS 
The goal of this research is to determine if the behavior 

of the monitored equipment deviated from the normal status. 
The training set contains only normal data, classified as such 



by a human expert. The detection method compares the 
current acquired data to the normal signature as being learnt 
beforehand and it decides if an alarm has to be raised. The 
decision depends on a distance function between the two 
signatures and on a threshold chosen during training. In this 
paper, two different distance functions are computed, and the 
alarm is raised if any of them gets higher than their 
corresponding threshold. The normal and the current 
signatures are d-dimensional vectors, denoted by x and y, 
respectively. The two distance functions are defined as: 
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The alarm is raised if: 

𝑚𝑠𝑒 > 𝑡ℎ1	OR		𝑚𝑎𝑒 > 𝑡ℎ2	 	 	 							(3) 
 

where the thresholds th1 and th2 are determined during 
training. 

A distinct problem is the evaluation of the performance 
of the detection method. Because the objective is to detect 
the fault state only, the evaluation differs, with respect to the 
applications where fault isolation is the objective. In this 
case, we adopted the following evaluation method: we 
consider the addition of a sinusoidal disturbance in a normal 
signal record. It is equivalent to the addition of a line in a 
normal signal spectrum, having the amplitude multiplied by 
n/2, where n is the number of samples. The performance is 
defined as the minimum amplitude of the disturbance that 
raises the alarm. This procedure can be applied for any 
frequency of the disturbance. However, in this work, only the 
values of 245Hz and 700Hz were chosen. This choice was 
made knowing that a spectral line of 245Hz often occurs in 
the recorded signal, while a spectral line of 700Hz is seldom 
observed. The adopted performance definition corresponds 
to the usual phenomena that produce faults: wear or 
malfunction of the parts of the pump determine new spectral 
lines to appear or significant raise in amplitude of the 
existing spectral lines. 

 
Fig. 2. Power of the signals in the training set 

The central problem of the detection is the choice of the 
signature. A simple way to do this could be to monitor the 
power of the signal. Fig. 2, contains the diagram of the 
power of the signals in the training set (3062 recorded 
sequences), which are all normal ones. The diagram proves 
that power is not a reasonable measure to detect faults. The 
large variation in power is mainly produced by the coupling 
between the vibrations of the two pumps in a pair and by the 

coupling of the 11 pairs, through the three pipes connecting 
them. The surge in the diagram does not correspond to an 
instant surge in signal power, as the moments of the records 
can be separated by minutes or hours. 

According to Fig. 2, the power of a signal detected as 
faulty should be higher than 1.1 units, meaning at least an 
increase of 0.9 units. This corresponds to a sinusoidal 
disturbance of amplitude 1.4. Using an euclidian distance 
function between the recorded signals is simply reduced to 
the problem above, as it contains the same sum of squares. 

Instead, another detection method was adopted, as 
follows: 

• the vector representing the signature of the pump 
vibration is the modulus of the spectrum of the 
recorded signal. This means that the discrete Fourier 
transform is applied to the signal and the amplitude 
of the first 2000 spectral lines form the analyzed 
vector (the next 2000 lines mirror the first ones); 

• the required analysis is performed by an 
autoencoding NN, i.e. a network performing a 
compression of the input vector, then a 
decompression as shown in Fig. 3. 

 
Fig. 3. Schematic representation of the autoencoding NN 

The reason to use the spectral representation of the signal 
corresponds to the spread diagnostic method, used by the 
human expert. Most frequently, the abnormal behavior is 
detected by observing the vibration spectrum, although, 
sometimes, an analysis of the envelope is also helpful. 

The reason to use an autoencoding NN is mainly 
explained by the unsupervised, data-driven, training method. 
During the compression of the vectors in the training set, the 
NN implicitly learns the common features of these vectors, 
i.e. their signature. The infrequent features are neglected. 
The decompression brings the vector almost to its input 
aspect. If an outlier (i.e. a vector reflecting the abnormal 
behavior of the equipment) is presented to the same NN, the 
disturbing features will also be neglected, resulting in a 
considerably distant vector, after decompression. This 
procedure allows training without explicitly extracting the 
features of the vectors, as a preliminary operation. It should 
be mentioned that Principal Component Analysis and 
Singular Spectrum Analysis can be used for 
compression/decompression too ([17]), but they fit with the 
problems with data lying in a linear subspace of the input 
space. This is not the case, so the NN was chosen for the 
autoencoding stage, as it has the ability to model highly 
nonlinear domains of the input space.  

As a consequence, assuming the NN was already trained 
to perform autoencoding and the thresholds th1, th2, 
introduced in equation (3) were determined, the fault 
detection procedure follows the steps: 

• the recorded sequence is limited to 1 second in length. It 
contains 4000 samples, as 4kHz was chosen as the 



sampling frequency. If the sensor was sampled at a 
different frequency (e.g. 26,666 Hz), a resampling is 
performed. In this case, before the resampling operation, 
an anti-alias filter is set to 2kHz; 

• the spectrum of the recorded sequence is computed 
(discrete-time Fourier transform) and the amplitudes of 
the first 2000 spectral components form the vector to be 
analyzed; 

• the vector is compressed, then decompressed, by the 
autoencoding NN; 

• the distance functions (1) and (2) are computed. It should 
be noted that x and y represent the input and the output 
vector, while their difference has the meaning of a 
residuum. The residuum itself contains the deviation of 
the input vector from the normal signature. Accordingly, 
mse and  mae have the meanings of the power and of the 
maximum amplitude in the residuum vector; 

• the decision to raise an alarm or not is taken using (3). (In 
addition, more statistical considerations could be made 
about the necessary consecutive alarms that confirm the 
faulty state, but they are beyond the goal of this paper.) 

The procedure of choosing the values of the thresholds, 
th1 and th2, can be made as follows. When analyzing the 
training performance, the residuum vector is small, but not 
null. The threshold is chosen at the highest value of the 
distance function, computed for all the residuum. For 
instance, in Fig. 4, the distance was computed for 3062 
vectors and the threshold should be chosen close to the value 
0.114. A lower value will increase the probability of false 
alarms, while a higher value will increase the probability of 
missed alarms. 

 
Fig. 4. Example of the modulus of the residuum, after a training session 

As explained above, the evaluation of the performance of 
the detection method is based on the minimum amplitude of 
a disturbance that raises the alarm, when added to a normal 
recorded sequence. 

The first version of autoencoding NN is a feedforward 
one, having the structure in Fig. 5. The size of the input and 
output vectors is set to 2000. Obviously, during training the 
input and the target sets are identical, as role of the NN is to 
The size of the second hidden layer is set to the number of 
components of the encoded representation. The sizes of the 
first and third hidden layers are determined by the required 
accuracy of the compression and decompression, 
respectively. In this work, the three layers were set to 200, 
50, 200 neurons. This means an internal representation of 50 
components. The activation functions were linear for the 
output and the second hidden layer (compressed 
representation) and sigmoidal for the first and third hidden 
layers, who perform the nonlinear compression/ 
decompression. The advantage of using such a simple NN is 
the short training time, allowing to tune the parameters in 
repeated training sessions. However, the accurate feature 
extraction is limited by the small number of layers and 
neurons. 

 
Fig. 5. Schematic representation of the feedforward NN, performing 
autoencoding 

The second version of the autoencoding NN is a 
convolutional one. The structure can be observed in Fig. 3, 
but the encoding and decoding sections contain 
convolutional layers, as in Fig. 6. These ones allow the input 
data to be divided in smaller parts, reflecting the similarities 
or differences on a small scale, and shortening the processing 
time for very large vectors. The encoding section contains 3 
convolutional layers, interleaved with MaxPooling layers, in 
order to gradually reduce the vector size. The convolutional 
layers include 12 filters each. These are not identical, their 
sizes decrease from 128, to 64 and to 16, for the encoded 
representation. As already mentioned, the encoded 
representation is a 50 dimensional vector, so this layer 
contains 50 neurons. The decoder performs the inverse 
transform, and contains an initial layer of 1500 neurons, then 
3 similar convolutional layers, with filter sizes of 16-64-128. 

 

 
Fig. 6. Structure of the convolutional autoencoding NN 



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

The number of convolutional layers and their sizes were 
chosen to obtain a compromise between the performance of 
the network and its complexity (which determines the 
training time). 

The flow of all the detection procedure, using an 
autoencoding NN, is presented in Fig. 7. The resampling 
stage is necessary only when using a higher sampling 
frequency than 4kHz. 

 
Fig. 7. Schematic representation of the detection process, using the 
autoencoding NN 

IV. EXPERIMENTAL RESULTS 
The training set for both NNs was extracted from files 

recorded during January 2022, from a single pump and for a 
single axis (y, radial). Every file contains a 1s record. A total 
of 4522 files were recorded, but only 3062 were included, 
while the others correspond to moments when the motor was 
off. For testing the fault detection method and the chosen 
values of the thresholds, further 75 files, recorded during the 
beginning of February 2022 were used. The maintenance 
team confirmed that the monitored pump worked normally 
(i.e. no fault) during this time interval.  

The first version of autoencoder NN (feedforward, 4 
layers) was trained. The values of the thresholds were chosen 
as indicated in the previous section, in order to have 100% of 
the vectors in the training set correctly recognized as normal 
(3062 vectors). Then, the procedure was applied to the test 
set and 100% of them were recognized as normal (75 files). 
When evaluating the performance of the detection procedure, 
the results were: 

• a minimum 0.8 amplitude of the disturbance on 700Hz is 
necessary to raise the alarm on the disturbed training set. 
All vectors in the disturbed test set were correctly 
recognized as abnormal; 

• a minimum 0.82 amplitude of the disturbance on 245Hz 
is necessary to raise the alarm on the disturbed training 
set. All vectors in the disturbed test set were correctly 
recognized as abnormal. 

The second version of autoencoder NN (convolutional) 
was also trained. The values of the thresholds were again 
chosen for 100% correct recognition in the training set. 
When applying the detection procedure to the test set, 98.8% 
of the vectors were correctly recognized (1 single false 
alarm). The results of the performance evaluation were: 

• a minimum 0.2 amplitude of the disturbance on 700Hz is 
necessary to raise the alarm on the disturbed training set. 
All vectors in the disturbed test set were correctly 
recognized as abnormal; 

• a minimum 0.21 amplitude of the disturbance on 245Hz 
is necessary to raise the alarm on the disturbed training 
set. All vectors in the disturbed test set were correctly 
recognized as abnormal. 

These results show the superior performance of the 
convolutional autoencoding NN, in the fault detection 
procedure. It should be mentioned that sometimes only one 
of the mse and mae functions contribute to the the correct 
recognition of the fault, although they usually indicate the 
same status. 

The detection method (convolutional NN) was further 
tested, meaning a continuous online monitoring of the 
equipment. In order to avoid false alarms, the alarm is raised 
if 5 successive positive results are met. The result is 
presented in Fig. 8, where it is visible a transitory alarm on 
February 11-th, then repeated alarms on February 25-th. The 
alarms correspond to the moments when the functions mse 
OR mae raise exceed the thresholds (red lines). The user 
confirmed that the equipment suffered a malfunction and it 
was turned off, in order to be repaired. 

 
Fig. 8. Evolution of the mse function, during training and during online monitoring 

We notice important aspects on the parameters of this 
procedure: thresholds and sizes of the NN layers. As 
mentioned above, the thresholds are determined at the end of 
the training, so as to have 100% correct recognition of the 

vectors in the training set. On the contrary, there is no 
systematic approach to determine the compression ratio or 
the size of the encoded representation. The variations of this 
parameter during the experiments proved that a low size 



reduces the ability of the network to reproduce the input 
vector at its output. This way, the residuum is increased and 
the possibility of discrimination between normal and fault is 
reduced. On the other hand, a high size (i.e. low compression 
ratio) allows over-fitting and increases the training time. In 
this case, the NN is not able to discard the irrelevant features. 
It performs well on the training set but has a poor 
performance during further tests.  

The first version of autoencoder NN was implemented in 
Matlab and run on a regular PC. The Levenberg-Marquardt 
learning function (“trainlm”) required too much memory, so 
we used a version of the gradient descent function 
(“traingd”). It required 100 iterations and 16 minutes to train. 
The fault detection stage, for a single vector takes much less 
time (under 1s) but loading the parameters of the NN takes 
10s. 

The second version (convolutional NN) was 
implemented in Python 3.8.10, using the low-level library 
Tensor-Flow 2.7.0 and the high-level library Keras 2.7.0. 
Training was performed on a powerful computer, endowed 
with Intel Xeon 12-core 2.1GHz CPU, 48GB RAM and an 
NVIDIA A100-PCIE-40GB GPU, under Ubuntu Linux 
20.04.3 LTS. Training required 10,000 iterations (epochs) 
and took 132 minutes to run (other 30 minutes necessary to 
load the training set, through a distant connection). The fault 
detection stage, for a single vector takes much less than 1s. 

V. CONCLUSIONS 
Two versions of autoencoding NNs were trained to detect 

faults of a rotating machinery, based on measured vibrations. 
Training uses an unsupervised procedure, without the need 
of previous labeling of the examples by a human expert. 
When learning the signature and detecting the faults, the 
convolutional NN proved to be 4 times more sensitive than a 
simple feedforward NN. The method was tested in an 
industrial environment, using the signal provided by simple 
and cheap accelerometers. The detected fault (abnormal 
behavior of the equipment) was confirmed by the 
maintenance team of the plant. 
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