
A compiler for Packet Filters

Mihai-Lucian Cristea and Herbert Bos

Universiteit Leiden
Niels Bohrweg

2333 CA Leiden
{cristea,herbertb}@liacs.nl

Keywords: embedded systems design, packet filtering, network processors

Abstract

FFPF, the Fairly Fast Packet Filter allows users to
stick a small amount of code into the kernel. The
code currently uses a low-level stack language for de-
scribing the flow expressions. In modern processor
architectures, the processing speed of a stack-based
language is slower than a register-based language.
Therefore, our architecture proposes to boost up the
filter processing by using the well-known gcc com-
piler. In this paper, we describe the compiler architec-
ture as well as a specific implementation using FFPF.

1 Introduction

In today’s high-speed networks, monitoring tools
are required to handle very large amounts of network
traffic per time unit. Moreover, the users’ require-
ments become more and more complex (e.g. scan-
ning every packet for the occurrence of a worm [10]).
For these reasons, more sophisticated tools are needed
than the ones that are available today. Furthermore,
these tools should be geared for high traffic rates.

A monitoring tool consists mainly of three parts:
at the highest level is the interface to the user and
at the lowest level is the kernel device driver. The
third part, no less important than the other two, is
the ‘packet filter’. In this paper, a packet filter refers
to a small amount of code that processes packets at
an early stage, e.g. to classify it as interesting, or to
gather statistical information about traffic. In essence,
it is an expression of the user monitoring requirements
at the lowest levels, and it should satisfy the follow-
ing two conditions. First, it should be easy for users
to specify them and the packet filter language should
provide flexibility. Second, the filter should be pro-
cessed as fast as possible. Therefore, the packet filters
should be suitable for running at the lowest possible
level (e.g. the OS kernel or even specialised hard-

ware such as Network Processors (NP) [6]. Unfor-
tunately, current monitoring tools do not accomplish
these goals well.

The fairly fast packet filter (FFPF) [3] is an
approach to network packet processing that adds
many new features to existing filtering solutions like
BPF [8]. FFPF is designed for high speed by push-
ing computationally intensive tasks to the kernel (or
even network processors, if present) and by minimis-
ing packet copying. FPL-1, the current filter lan-
guage, is a straightforward interpreted stack language.
Although the byte code is fairly efficient, running it
in an interpreter hurts performance. For this reason,
the language issue has recently been reconsidered and
we are now adding support for a new language that
1© compiles to fully optimised object code, and 2© is

based on registers and memory. The new language,
FPL-2, and its compiler are the topic of this paper.

The FFPF architecture proposes to achieve the goal
of fast packet processing by using a custom front-end
for FPL-2 filter expressions, and as back-end the well-
known gcc compiler. As a result, the object code will
be heavily optimised even though we did not write an
optimiser ourselves. This object code will be invoked
by FFPF for each incoming packet. During packet
handling, the filter object code updates the processing
results in a local memory area shared with FFPF and
from here it is mmapp-ed to the applications. More-
over, by using a safe language for the packet filters,
the resulting system provides safety, while packets are
processed at the speed of native code, fully optimised
for the latest hardware. A trusted FPL-2 compiler and
a custom code loader guarantee that only programs
written in FPL-2 can be loaded in the FFPF frame-
work.

The remainder of this paper is organised as fol-
lows. In Section 2, an overview of the FFPF mon-
itoring tool is presented. The direct benefits of us-
ing a filter compiler in FFPF are shortly described in
Section 3. In Section 4, the compiler design and ar-

chitecture are discussed. The implementation details
are presented in Section 5. The evaluation of the pro-
posed architecture is highlighted on a concrete exam-
ple in Section 6. Related work is highlighted in Sec-
tion 7 and conclusions drawn in Section 7.

2 The FFPF tool

FFPF provides a complete solution for filtering and
classification at high speeds, either in the kernel or
on a network processor, while minimising copying.
FFPF was implemented in the Linux kernel on top of
netfilter [11]. There is also a prototype implementa-
tion on IXP1200 network processors (currently it does
not include all features). While both versions signif-
icantly reduce copying, only the latter provides true
zero-copy functionality.

A high-level overview of the architecture is shown
in Figure 1. It shows that the central component of
FFPF is the Buffer Management System (BMS). It is
beyond the scope of this paper to describe the func-
tionality of BMS in detail. BMS consists of a main
buffer shared by all applications that might access
it. BMS also includes several secondary buffers and
pointer lists needed to assure a good system manage-
ment. The main purpose of BMS is to capture all
packets that are considered ‘interesting’ and hand a
reference to these packets to the appropriate applica-
tions. The idea behind FFPF is simple. Users load
‘expressions’ that process the packets. If a packet is
classified as ‘interesting’, it is pushed in the shared
buffer and a pointer to the packet is placed in the ap-
plication’s index buffer. An application uses the index
buffer to find the packets in which it is interested. In
addition, an expression has its own chunk of memory
(known as ‘MEM’) that is shared with the application
and which it may use to store results to be read by the
application or temporary values that do not disappear
between invocations (persistent state). All buffers are
memory mapped, so no copying between kernel and
user-space is necessary.

FFPF allows one to insert fairly complex expres-
sions in the kernel of an OS. In fact, the expressions
are more like simple programs and may contain loops,
hashing, functions, etc. The filter evaluation is ‘fairly’
efficient, but not as fast as it could be, as it uses a
stack-based interpreter. In the ’93 BPF paper, Steven
McCanne and Van Jacobson have argued that stacks
are slower than register/memory/accumulator inter-
preters.

3 Improving the packet filter processing

Flow expressions are among the most complex fea-
tures of FFPF. The language used in FFPF so far for
describing a flow expression, is called FPL-1 (the
FFPF programming language 1).

F1 Fm

FmF2
F1

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

F2

local pkts index

App 1
local pkts index

App 2

local pkts index

App n

mmap

pkt_filter list
for processing

input pkt*

network devices

pa
ck

et

userspace

kernel

entry point list

Buffer Management System

B.M.S.

Figure 1: FFPF overview

3.1 From interpreted to compiled code

FPL-1 is a low-level stack language with support
for most simple types and all common binary and log-
ical operators. In addition, FPL-1 provides restricted
looping and explicit memory operations to access a
flow’s persistent memory array. Flow expressions in
FPL-1 are compiled to byte code and inserted in the
FFPF kernel module by means of a special purpose
code loader. Each time a packet arrives on one of the
monitored interfaces, the FPL-1 expression of a flow
f is called to see whether or not f is interested in
this packet. By calling an FPL-1 expression, a long
process is involved as the filter’s byte-code runs in an
interpreter. As it is difficult to compete both in writ-
ing efficient code optimisers and in providing an ef-
ficient packet processing environment, we have cho-
sen to exploit the existing optimiser of gcc for the
former task. In essence, the FPL-2 compiler gener-
ates C code that is subsequently completed by gcc to
a Linux kernel module that interfaces with FFPF. In
this paper, we describe the support that was added for
FPL-2, a new language that 1© compiles to fully op-
timised object code, and 2© is based on registers and
memory. A configuration switch determines whether
to use ‘old-style’ FPL-1, or ‘new-style’ FPL-2.

3.2 The FFPF-compiler tool

Assuming that the user has a filter expression writ-
ten in FPL-2, there are three steps to follow as illus-
trated in Figure 2. The first step consists of translating
the filter into an FFPF-filter module. This module is
a direct translation of FPL-2 code into C code and
forms the core of the future kernel module that FFPF
needs to invoke on every packet. As a second step, the

FFPF-compiler passes the C code files to gcc. The
result is the object code of an FFPF kernel module.
The last step is loading the filter into FFPF by calling
the FFPF helper function ‘Insert filter’.

filter script

translator
FFPF

resource
restrictions

ffpf_module.c

ffpf_filter_nn.c

gcc ffpf_filter_nn.o

insert_filter

release_filter

FFPF kernel module

record
compilation

inputs for gcc

Figure 2: User compiles FPL-2 filter expression.

The FPL-2 compiler, in addition to the ‘C trans-
lation’, also makes some specific checks for security
reasons. Because our framework allows users to run
code in very low hardware levels, we must provide
proofs of authorisation of the compiled code before
injecting it into kernel or hardware. The FPL-2 com-
piler accomplishes this by using KeyNote to generate
a compilation record, which proves that this module
was generated by this (trusted) FPL-2 compiler [1].
The proof contains the MD5 of the object code and is
signed by the compiler. When loading an FPL-2 fil-
ter expression, users provide the object code, as well
as the code’s compilation record. The code loader
checks whether the code is indeed FPL-2 code gener-
ated by the local compiler and if this is the case, loads
it in the kernel’s FFPF target. In fact, these are addi-
tional security checks, but these are beyond the scope
of this paper. Interested readers are referred to [2].
The user has now loaded a fully optimised register-
based expression in the kernel (see Figure 2).

4 The FPL-2 language

In this section, the compiler architecture and its
language elements are described. The FPL-2 com-
piler uses the traditional compiler construction tools
such as lex and yacc for lexical analysis and parsing
phases of compilation. It also uses TreeCC [13] as
abstract syntax tree (AST) tool to facilitate working
with bison/yacc.

In the followings subsections, the FPL-2 elements
are described.

4.1 Operators, expressions and state-
ments in FPL-2

Operators act upon operands and specify what is
to be done to them. Expressions combine variables
and constants to create new values. Statements are
expressions, assignments, external function calls, or

control flow statements which make up filter pro-
grams. As illustrated in Figure 3, most of the opera-
tors/expressions are designed in a way that resembles
well-known imperative languages such C or Pascal.
Therefore, the users should find it fairly easy to use
this filter language.

operator-type operator
Arithmetic +, -, /, *, %, --, ++
Assignment =,*=, /=, %=, +=, -=

<<=, >>=, &=, ˆ=, |=
Logical/Relational ==, !=, >, <, >=, <=,

&&, ||, !
Bitwise &, |, ˆ, <<, >>

statement-type operator
if/then IF (expr) THEN statement FI
if/then/else IF (expr) THEN stmt1 ELSE stmt2 FI
for() FOR (initialise; test; update)

stmts; BREAK; stmts; ROF
external function EXTERN(fnct name,

sharedMem IndexRead,
sharedMem IndexWrite)

hash() HASH(start byte, size)

Figure 3: Operators, expressions and statements

4.2 Restricted FOR loops

For resource safety, the FOR loop construct is lim-
ited to loops with a pre-determined number of itera-
tions. Users specify both start and end values of the
iteration variable, as well as the amount by which the
loop variable should be incremented or decremented
after each iteration. The BREAK instruction, allows
one to exit the loop ‘early’. In this case (and also
when the loop finishes), execution continues at the in-
struction following the ROF construct. For loops can
be used to test a small range of bytes in the packet or
even to scan the entire packet payload for the occur-
rence of a pattern.

4.3 External functions

An essential feature of FFPF is its extensibility and
the concept of an ‘external function’ is another key to
speed. It is possible for both users and administrators
to register FFPF kernel functions (fully optimised na-
tive code) that can be called from within the filter ex-
pression. The only difference between code registered
by users and by administrators is in what this code is
allowed to do (see also [3]). While we do not intend
to discuss the way users may load native code in the
kernel directly, we emphasise that it is done in a safe
manner. The method that was used for this purpose
is known as the Open Kernel Environment, which is
described in more detail in [4]. In FPL-2, an external
function is called using the EXTERN construct. For
instance, EXTERN(foo) will call external function

foo. External functions allow users to call efficient C
implementations of computationally expensive func-
tions, such as checksum calculation, or pattern match-
ing.

An external function takes as parameters a pointer
to the packet, and also pointers to memory blocks to
be used by the function. Every external function that
is registered also declares information about the mem-
ory needed by the function. This takes the form of two
parameters: 1© start index of ‘read-only’ shared mem-
ory with external functions, 2© start index of ‘write’
shared memory (e.g. some functions may return re-
sults and this is how such elasticity is reflected). An
external function can process the packet just like nor-
mal flow expressions and is able to place results either
in its shared memory MEM or in its return values. We
will discuss the memory allocation in a little more de-
tail in Section 4.4.

4.4 Data addressing modes

The addressing modes of packet data are important
for ease of use. Therefore, we support several ways
of addressing in order to provide an intuitive way of
handling the data.

Packet data addressing Index addressing mode
combined with variable offset index addressing mode
can give any bit of data within the packet data, as
shown in Figure 4. For improving the readability of
programs, we used the lexical conventions according
to the industrial standard IEC 1131-3 [7].

types operator point to
Byte PKT.B[num] the whole byte ’num’

PKT.B[num].U4[0-1] the lowest/highest 4 bits
of byte ’num’ cast to byte

PKT.B[num].LO or the lowest/highest 4 bits
PKT.B[num].HI of byte ’num’ cast to byte
PKT.B[num].U1[0-7] the bit of byte ’num’

cast to byte

Word PKT.W[num] the word ’num’
PKT.W[num].U8[0-1] the lowest/highest part of
PKT.W[num].HI or word ’num’ cast to byte
PKT.W[num].LO
PKT.W[num].U4[0-3] a byte of word ’num’
PKT.W[num].U1[0-15] a bit of word ’num’

DWord PKT.DW[num] the double-word ’num’
PKT.DW[num].U16[0-1] the lowest/highest part of
PKT.DW[num].HI or dword ’num’ cast to word
PKT.DW[num].LO
PKT.DW[num].U8[0-3] a byte of dword ’num’
PKT.DW[num].U4[0-15] a half-byte of dword ’num’

cast to byte
PKT.DW[num].U1[0-31] a bit of dword ’num’

cast to byte

Figure 4: Packet addressing modes

Some examples of packet addressing are drawn in
Figure 5. These examples show how easy and intu-
itive a specific IP field is reached within the packet.
The most used fields may also be defined as macros,
allowing users to customise the way they express
themselves. Moreover, using a register or memory
variable as index for packet reference the language
increases considerably the applications area. In the
(trivial) example shown below, the sum of the first 20
bytes in the packet is computed.

FOR (R[0]=0;R[0]<20;R[0]++)
M[0]+= PKT.B[R[0]];

ROF

IP field operator result
VERS PKT.B[0].HI U8 (the value of

high four bits of
the first byte)

HDR-LEN PKT.B[0].LO U8 (the value of
low four bits of
the first byte)

Precedence+TOS PKT.B[1] U8 (the value of
whole byte)

TOTAL-IP-LEN PKT.W[1] U16 (the value of
second word)

DATAGRAM-ID PKT.W[2] U16 (the value of
third word)

FRAGM-AREA PKT.W[3] U16 (the value of
fourth word)

TIME-TO-LIVE PKT.B[8] or U8
PKT.W[4].HI

PROT-CARRIER PKT.B[9] or U8
PKT.W[4].LO

HEADER-CHKS PKT.W[5] U16
SRC-ADDR PKT.DW[3] U32
DEST-ADDR PKT.DW[4] U32

UDP-SRC-PORT PKT.DW[5].HI or U16
PKT.W[10]

UDP-DEST-PORT PKT.DW[5].LO or U16
PKT.W[11]

Figure 5: IP packet fields

Memory data addressing Another important ad-
dressing mode is used for accessing the memory lo-
cations. We support two types of memory: a shared
memory array MEM and fast local registers. The
shared memory MEM is provided by the FFPF core.
Therefore, the filter module does not perform dy-
namic memory allocation/deallocation. The shared
memory is used for data exchange between software
modules. In the FFPF architecture, there are many
interfaces related to shared memory, but only two of
them are relevant for the packet filtering language and
thus they are described presently. The first interface
involves the data exchange between the FFPF core
and each loaded filter module. As an example, the

results of a particular filter module can be periodi-
cally read by a user application. The second interface
is used for data exchange between ‘external’ func-
tions. Assume that there are two functions ‘Foo’
and ‘Bar’ already registered within the FFPF core,
and one needs to access the processing results of the
other.

Generally, using data stored in registers increases
the processing speed in case of very often used vari-
ables. The maximum number of local registers is de-
fined in the ‘resource restrictions’ and depends on the
hardware (as indicated by Figure 2).

As shown below, a memory location is easily ac-
cessed (retrieved from / stored in) by using the assign-
ment operator.

M[12]=123+45*6/7-M[8]; // memory access
R[0]=M[8]%R[1]; // register access
R[1]=123+R[1]; // compute the relative index
M[R[1]] += IP_LEN // store total packet size

// PKT.W[1] (from vocabulary)

Using the language elements already described up
to here, an example of filter code is drawn below.

IF ((R[0]<100) && (PKT.W[1]>150))
// or IP_LEN > 150 (big packets)

THEN
M[0]+= IP_LEN; // total no. of bytes
R[0]++; // count no. of big packets

FI

This trivial example collects the data that is needed
to calculate the average size of the first 100 pack-
ets larger than 150 bytes. In fact, it counts the to-
tal amount of bytes and it keeps track of the number
of incoming packets. The purpose of the example is
to show how data fields are referenced within pack-
ets by using operator ‘PKT.’ and also to show how
variables are handled, by using memory ‘M[]’ and
registers ‘R[]’.

5 Implementation

Our architecture implements a source-to-source
compiler, a kernel module project and the interface
to the existing FFPF monitoring tool.

5.1 FFPF translator

The FFPF translator takes a filter ex-
pression, written in FPL-2 from a file (e.g.
‘ffpf_filter_01.kef’). The translates
gives the translated C code as result. This file (e.g.
‘ffpf_filter_01.c’) is part of the filter kernel
module. Next, this kernel module is compiled by
gcc with full optimisation on and will be inserted by
the authorised user. As a result, FFPF will register
and start handling it.

5.2 Interfacing FFPF with compiled fil-
ter object

There are two interfaces. The first inter-
face describes inserting/registering and unregister-
ing/removing kernel modules. The second interface
takes care of run-time handling of the filter within
FFPF.

Assuming that a filter has been compiled in the
filter kernel module, it must be inserted and regis-
tered by FFPF. The user can simply inject the fil-
ter module into the kernel by using the FFPF loader
(e.g. ‘./ffpf_loader ffpf_filter_nn.o’).
While doing so, FFPF checks also the module autho-
risation and decides whether the module is going to
be accepted or not. See Callout 1 in Figure 6 and
init_module() from the code-lines described in
Figure 7.

Filter 1
Filter 2

F1
F2

Fnn

Fn

Filter nn
Filter n

FFPF grabber

NETFILTER

13

2

g_listFilters

kernel

userspace

remove filter n insert filter nn

CheckFilters()

network devices

Figure 6: FFPF filters interfaces

The FFPF ”packet grabber” employs for instance
a hook registered within Linux Netfilter. The
hook behaves almost as an interrupt handler, and is
invoked at each incoming packet. The hook function
gets as parameter a pointer to current packet. The
packet pointer is passed to a function CheckPkt
from each filter module registered in the filters list
‘g_listFilters’. The filter list is maintained
by the FFPF core in such way that any filter register-
ing/unregistering operation goes safely through only
one point and thus mutual exclusion is ensured. See
Callout 2 in Figure 6 and code-lines in Figure 8.

The user might release a packet filter from
the filters list by invoking the FFPF loader
with the -u option on the specific filter (e.g.
‘./ffpf_loader -u ffpf_filter_n.o’) as
illustrated in Callout 3 in Figure 6. When removing
the module, FFPF automatically checks whether the

specified filter is registered or not and if so, releases
the pointer from ‘g_listFilters’.

int init_module(void)
{// registering the filter module using FFPF’s helper

struct module* pOwner = THIS_MODULE;
printk (PFX "++ entering %s\n", pOwner->name);
FFPF_Filter_Register(pOwner->name, &CheckPkt);
return 0;

}
int CheckPkt(char* pPkt, int iSize, void* pMemory)
{

MEM* pSharedMem = (MEM*)pMemory;
/* TRANSLATED CODE WILL BE ADDED HERE @*/
return 0;

}

Figure 7: FFPF filter module template

int CheckFilters(struct iphdr *pkt)
{

struct list_head* pPos;
int iFiltersFound = 0;
FILTER* pFilter=NULL;
FOR_EACH(pPos, &g_listFilters)
{

pFilter=list_entry(pPos, FILTER, g_listFilters);
pFilter->pCheckFunction((char*)pkt,

sizeof(struct iphdr), &pFilter->Memory);
iFiltersFound++;

}
return iFiltersFound;

}

Figure 8: FFPF hands packets to registered filter mod-
ules

6 A filter example

The proposed architecture is evaluated by 1© tak-
ing a practical filter expression, written in FPL-2,
2© compile it using the FFPF-compiler, 3© inject it

into the Linux kernel with the help of FFPF, and 4©
measuring its overhead during filter processing. The
results are compared to an equivalent implementation
in FPL-1. As the compiler is still under construc-
tion, only a few simple examples are evaluated. The
first filter example consists of counting all TCP flows,
where a ‘flow’ is defined as all incoming packets from
a certain source and are going to a certain destination,
it is shown below.

IF (PKT.B[9] == 6) // is this TCP?
THEN

R[0]=HASH(12, 8); // calc. hash over IP addresses
M[R[0]]++; // increment the counter

FI

This filter expression checks whether the IP packet
is TCP (tenth’s byte of the packet is equal to 6) and
if so it makes a hash of the packet fields ‘SRC ADR’
and ‘DEST ADR’ together (8 bytes of data, starting
at byte number 12). The hashing result, that is unique
with high probability, forms an index (flow identifier)
for storing the counter value.

6.1 Compiling a filter

The FPL-2 compiler consists of a script that first
generates all the source files needed for the kernel
module, and then calls gcc to compile them into a
loadable module. Next, it uses KeyNote to generate
a compilation record for the resulting object code.

6.2 Processing a filter

Assuming that the filter example has been suc-
cessfully injected into the FFPF core, each incom-
ing packet will be processed as follows (see Fig-
ure 6). Once the packet is received by the Linux
Netfilter framework, its pointer is passed to
the FFPF ”packet grabber” and thereafter to the
CheckFilters() function. As observed in Fig-
ure 8, the CheckFilters() function runs one
by one every pCheckFunction found registered
in the filters list ‘g_listFilters’. By calling
pCheckFunction, the compiled filter expression
is executed. This pCheckFunction has the fol-
lowing parameters: the pointer of the current packet
as input for data processing, and the address of the
local shared memory (provided by FFPF core) as in-
put/output for processing results.

In this way, the goal - processing data ‘as fast as
possible’ is achieved. No packets and no memory
blocks are copied. The application user gets access di-
rectly to the processing results by the ‘memory map-
ping’ mechanism already implemented in the FFPF
core.

6.3 Results

The benchmark consists of running the same filter
expression for a certain number (e.g. 15) of succesive
times, measuring the overhead, in clock-ticks, intro-
duced by the filter check function for each time. The
result is the median value of these 15 measurements
and it is shown in Figure 9 among other filter expres-
sion processing results.

M[2]=10; //100; 250; 500 - maximum iterations number
M[0]=0;
FOR (M[1]=0; M[1]<M[2];M[1]++)
IF (PKT.B[M[1]] == 0x65) // is this character ’A’?
THEN

M[0]++; // increment the counter
FI
ROF

This filter, in all its three versions (maximum itera-
tions number differs), perform an extensive computa-
tion - searching of a specific character (e.g. ‘A’) in the
packet data. If such a character is found, it is counted.

It is clear that FPL-2 easily outperforms FPL-1
(note that the scales are logarithmic). This is no sur-
prise, as FPL-1 uses a handwritten interpreter, while
FPL-2 is fully optimised C code. Especially for more
complex processing, such as looking at all bytes in the
payload, this difference in performance is very big.

1

10

100

1000

10000

100000

1000000

10000000

cl
o

ck
ti

ck
s

FPL-1 28292 220572 557948 1092796

FPL-2 200 596 952 3252

Loop10 Loop100 Loop250 Loop500

Figure 9: FPL-1 versus FPL-2.

Assign Hash
FPL-1 1020 1684
FPL-2 172 392

Figure 10: FPL-1 versus FPL-2.

In Figure 10 we also show a comparison of FPL-
1 and FPL-2 of the performance of applying a single
assignment, and of a hash function. Again, it is clear
that FPL-2 is much more efficient. As a result, we
believe that FPL-2 is an important contribution to the
FFPF framework.

7 Related work

FFPF is strongly related to previous approaches to
packet filtering such as MPF and BPF [9, 8]. The
FPL-1 language is similar to MPF in that it uses an
interpreted stack language, while FPL-2 is similar to
BPF in that is designed for speed, and based on a
registers/memory/ALU model. Unlike BPF, however,
FPL-2 is not interpreted but compiled to fully opti-
mised native code. FFPF differs from most existing
approach by minimising copying.

The loading model for fully optimised native code
was based on similar code loading approaches in the
Open Kernel Environment [4]. The OKE in turn uses
ideas originally found in SPIN [12], but employs a
trusted compiler and custom code loader, as it cannot
rely on safety features of its programming language.
The same is true for FPL-2.

FFPF is related to the SCAMPI project [5]. While
both projects share the same philosophy of processing
as much of the data as possible at the lowest levels
of the processing hierarchy, FFPF is significantly less
complex.

Not surprisingly, most closely related to FPL-2 is
FPL-1. The languages are roughly equivalent in ex-
pressive power, but FPL-2 is much more readable.
The main differences as far as language design is con-

cerned are that 1© operands in FPL-2 are always ex-
plicit (instead of implicitly using the stack), 2© the
addressing modes are better structured, 3© the parti-
tioning of MEM when calling an external function is
explicitly addressed, and 4© registers were added.

8 Conclusions

In this paper we have described how FFPF, the
fairly fast packet filter, was enhanced with a new
language, known as FPL-2. The language has sev-
eral advantages over its predecessor FPL-1. Firstly,
it is compiled to fully optimised native code, rather
than byte-code that is executed in an interpreter. Sec-
ondly, it is based on a modern memory/registers/ALU
model, rather than on the (slower) stack-based ar-
chitecture used by FPL-1. Thirdly, its similarity to
traditional imperative programming languages makes
FPL-2 much more readable than its predecessor. At
the same time safety is guaranteed by the trusted com-
piler and the custom code loader which ensure that
only programs known to be safe can be loaded in the
kernel or network processor. The FPL-2 approach
was evaluated experimentally by implementing a set
of programs in both FPL-1 and FPL-2 and compar-
ing their execution times. As expected, FPL-2 signif-
icantly outperforms FPL-1 in every respect.

Acknowledgements

This work was supported by the EU SCAMPI
project (IST-2001-32404).

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. D. Keromytis. Secure Internet Programming:
Issues in Distributed and Mobile Object Sys-
tems, chapter The Role of Trust Management
in Distributed Systems Security, pages 185–210.
Springer-Verlag Lecture Notes in Computer Sci-
ence, Berlin, 1999.

[2] H. Bos and G. Portokalidis. Ffpf: Fairly
fast packet filters. http://www.liacs.nl/
˜herbertb/projects/ffpf/.

[3] H. Bos and G. Portokalidis. Packet Monitor-
ing at High Speed with FFPF. Technical Report
TR-2004-01, LIACS, Leiden University, Niels
Bohrweg 1, 233 CA Leiden, January 2004.

[4] H. Bos and B. Samwel. Safe kernel program-
ming in the OKE. In Proceedings of IEEE OPE-
NARCH’02, New York, USA, June 2002.

[5] J. Coppens, S. V. den Berghe, H. Bos,
E. Markatos, F. D. Turck, A. Oslebo, and

S. Ubik. SCAMPI: A scalable and pro-
grammable architecture for monitoring gigabit
networks. In Proceedings of E2EMON Work-
shop, Belfast, UK, September 2003.

[6] T. Engbersen. Network processors. Computer
Networks, 41(5):545–547, April 2003.

[7] P. S. in Industrial Control Programming. Iec-
61131, 2003. http://www.plcopen.
org/.

[8] S. McCanne and V. Jacobson. The BSD Packet
Filter: A new architecture for user-level packet
capture. In Proceedings of the 1993 Winter
USENIX conference, San Diego, Ca., Jan. 1993.

[9] J. Mogul, R. Rashid, and M. Accetta. The packet
filter: An efficient mechanism for user-level net-
work code. In Proceedings of 11th Symposium
on Operating System Principles, pages 39–51,
Austin, Tx., Nov. 1987. ACM.

[10] M. Roesch. Snort: Lightweight intrusion detec-
tion for networks. In Proceedings of the 1999
USENIX LISA Systems Adminstration Confer-
ence, 1999. Available from http://www.
snort.org/.

[11] P. Russel. Writing a module for netfilter. Linux
Magazine, June 2000.

[12] S. Savage and B. Bershad. Issues in the design
of an extensible operating system. In Proceed-
ings of the First USENIX Symposium on Oper-
ating System Design and Implementation, Nov.
1994.

[13] P. L. Southern Storm Software and I. Free
Software Foundation. Tree compiler-compiler,
2003. http://www.southern-storm.
com.au/treecc.html.

